Answer:
An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. ... A net force = unbalanced force. If however, the forces are balanced (in equilibrium) and there is no net force, the object will not accelerate and the velocity will remain constant.
Explanation:
The kinetic molecular theory of matter states that: ... Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
143m/s if you just perhaps by what you know you'll figure it out
Answer:
v = 6.45 10⁻³ m / s
Explanation:
Electric force is
F = q E
Where q is the charge and E is the electric field
Let's use Newton's second law to find acceleration
F- W = m a
a = F / m - g
a = q / m E g
Let's calculate
a = -1.6 10⁻¹⁹ / 9.1 10⁻³¹ (-1.30 10⁻¹⁰) - 9.8
a = 0.228 10² -9.8
a= 13.0 m / s²
Now we can use kinematics, knowing that the resting parts electrons
v² = v₀² + 2 a y
v =√ (0 + 2 13.0 1.6 10⁻⁶)
v = 6.45 10⁻³ m / s