Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Answer:
For example, the sugar found in milk is called lactose. With the aid of the enzyme, lactase, the substrate, lactose, is broken down into two products, glucose and galactose. People who don't make enough lactase have trouble digesting milk products and are lactose intolerant.
. The empirical formula is the simplest whole number ratio.
The correct answer is 1. HCI
Answer:

Explanation:
The intermediates are the products of all the steps of the reaction pathway, with the exception of the last one. So the intermediates will be:
- N2O2 from the first step
- N2O from the second step
The list from reactant to final product:

<em>Note: the water is considered a by-product, given that is not the product of interest in this steps.</em>
The given question is incomplete. The complete question is:
A chemist adds 0.85 L of a 0.0050M calcium sulfate to a reaction flask. Calculate the mass in grams of calcium sulfate the chemist has added to the flask. Round your answer to significant digits.
Answer: The mass in grams of calcium sulfate the chemist has added to the flask is 0.58 g
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
moles of
=
Now put all the given values in the formula of molarity, we get
Therefore, the mass in grams of calcium sulfate the chemist has added to the flask is 0.58 g