To solve this problem we will use the concepts related to power, defined as the amount of energy applied over a period of time.
The energy in this case is the accumulated in the form of potential energy, over a period of time. Thus we will have that the mathematical expression of the power can be expressed as

Here,
E = Energy
t = time
As the energy is equal to the potential Energy we have tat

The weight (mg) of the man is 700N, the height (h) is 8m and the time is 10s, then:


Therefore the correct answer is A.
Answer:3.31m/s², to the right
Explanation:
According to the law of conservation of momentum of a body, change in momentum of bodies before collision is equal to the change in momentum after collision.
Momentum = mass × velocity
M1 and M2 be the masses of the first and second skaters respectively
Let u1 and u2 be the velocities of the first and second skaters respectively.
v be their common velocity after collision
M1 = 77kg M2 = 66kg u1 = 4m/s² u2 = 2.5m/s²
According to the law we have
M1u1 + M2u2 = (M1+M2)v
77(4) + 66(2.5) = (77+66)v
308 + 165 = 143v
V = 473/143
V = 3.31m/s²
Their velocity after collision will become 3.31m/s²
They will both move towards the right after collision because the mass of the body moving to the right is higher than the other mass and the mass is also moving at a higher velocity than the other.
Technically you can go forever on and on, but maybe your question was like how many rotations in a certain distance?
The correct option is PLUM PUDDING, SOLAR SYSTEM, ELECTRON CLOUD.
J. J Thompson was the scientist who proposed the plum pudding theory of atomic model. Neil Borh was the one who developed the solar system model of atomic theory while the electron cloud model of atomic theory that is presently been used was developed by an Australian scientist called Erwin Schrodinger.<span />