B Because I am I really really really really really….. be it is B i am latina
The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4
Answer:
Explanation:
Question 1
An arrow weighing 20g shortly after firing has a speed of 50m / s. Calculate the work done by the athlete. What is the potential energy of the elasticity of the tensed string?
mass m = 20g = 20/1000 = 0.02kg
speed v = 50m / s
P.E = K.E = ½mv²
P.E = ½ × 0.02 × 50²
P.E = 25 J
work done = P.E = 25J
Qestion 2
A 80 kg athlete stood on a trampoline with a coefficient of elasticity of k = 2 kN / m. As far as the edge of the trampoline lowers.
force of elasticity
F = -kx
x = F / k
in our case F will be the force of pressure or gravity
F = mg
g is gravitational acceleration, and according to Newton's second law, acceleration is force through mass - unit of force N, unit of mass kg. Acceleration either in m / s ^ 2 or N / kg
F = 80kg * 10N / kg = 800 N
x = 800N / -2000N = -0.4
The trampoline will lower, so from the level by 0.4 meters and hence this minus
To solve this problem it is necessary to apply the concepts related to heat exchange in the vegetable and water.
By definition the exchange of heat is given by

where,
m = mass
c = specific heat
= Change in temperature
Therefore the total heat exchange is given as


Our values are given as,
Total mass is
= 200lb ,however the mass of solid vegetable and water is given as,



Replacing at our equation we have,



Therefore the heat removed is 22411.2 Btu