1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
14

In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wave

length of 575 nm and the interference pattern observed on a screen 3.50 m from the slits.(a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen?(b) What is the difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern?
Physics
1 answer:
guajiro [1.7K]3 years ago
6 0

Answer:

Rounded to three significant figures:

(a) 2 \times 575\; \rm nm = 1150\; \rm nm = 1.15\times 10^{-6}\; \rm m.

(b) \displaystyle \left(1 + \frac{1}{2}\right) \times (575\;\rm nm) \approx 863\; \rm nm = 8.63\times 10^{-7}\; \rm m.

Explanation:

Consider a double-slit experiment where a wide beam of monochromatic light arrives at a filter with a double slit. On the other side of the filter, the two slits will appear like two point light sources that are in phase with each other. For each point on the screen, "path" refers to the length of the segment joining that point and each of the two slits. "Path difference" will thus refer to the difference between these two lengths.  

Let k denote a natural number (k \in \left\lbrace0,\, 1,\, 2,\, \dots\right\rbrace.) In a double-split experiment of a monochromatic light:

  • A maximum (a bright fringe) is produced when light from the two slits arrive while they were in-phase. That happens when the path difference is an integer multiple of wavelength. That is: \text{Path difference} = k\, \lambda.
  • Similarly, a minimum (a dark fringe) is produced when light from the two slits arrive out of phase by exactly one-half of the cycle. For example, The first wave would be at peak while the second would be at a crest when they arrive at the screen. That happens when the path difference is an integer multiple of wavelength plus one-half of the wavelength: \displaystyle \text{Path difference} = \left(k + \frac{1}{2}\right)\cdot \lambda.
<h3 /><h3>Maxima</h3>

The path difference is at a minimum (zero) at the center of the screen between the two slits. That's the position of the first maximum- the central maximum, a bright fringe where k = 0 in \text{Path difference} = 0.

The path difference increases while moving on the screen away from the center. The first order maximum is at k = 1 where \text{Path difference} = \lambda.

Similarly, the second order maximum is at k = 2 where \text{Path difference} = 2\, \lambda. For the light in this question, at the second order maximum: \text{Path difference} = 2\, \lambda = 2 \times 575\; \rm nm = 1.15\times 10^{-6}\; \rm m.

  • Central maximum: k = 0, such that \text{Path difference} = 0.
  • First maximum: k = 1, such that \text{Path difference} = \lambda.
  • Second maximum: k = 2, such that \text{Path difference} = 2\, \lambda.

<h3>Minima</h3>

The dark fringe closest to the center of the screen is the first minimum. \displaystyle \text{Path difference} = \left(0 + \frac{1}{2}\right)\cdot \lambda = \frac{1}{2}\, \lambda at that point.

Add one wavelength to that path difference gives another dark fringe- the second minimum. \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda at that point.

  • First minimum: k =0, such that \displaystyle \text{Path difference} = \frac{1}{2}\, \lambda.
  • Second minimum: k =1, such that \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda.

For the light in this question, at the second order minimum: \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda =  \left(1 + \frac{1}{2}\right)\times (575\; \rm nm) \approx 8.63\times 10^{-7}\; \rm m.

You might be interested in
The gas pressure inside a container decreases when
avanturin [10]

Answer:

When the volume increases or when the temperature decreases

Explanation:

The ideal gas equation states that:

pV= nRT

where

p is the gas pressure

V is the volume

n is the number of moles of gas

R is the gas constant

T is the gas temperature

Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

\frac{pV}{T}=const.

which means the following:

- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases

- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases

8 0
3 years ago
A 3.50 cm tall object is held 24.8 cm from a lens of focal length 16.0 cm. What is the image height?
Mandarinka [93]

Answer:

<h2>6.36 cm</h2>

Explanation:

Using the formula to first get the image distance

1/f = 1/u+1/v

f = focal length of the lens

u = object distance

v = image distance

Given f = 16.0 cm, u = 24.8 cm

1/v = 1/16 - 1/24.8

1/v = 0.0625-0.04032

1/v = 0.02218

v = 1/0.02218

v = 45.09 cm

To get the image height, we will us the magnification formula.

Mag = v/u = Hi/H

Hi = image height = ?

H = object height = 3.50 cm

45.09/24.8 = Hi/3.50

Hi = (45.09*3.50)/24.8

Hi = 6.36 cm

The image height is 6.36 cm

6 0
3 years ago
What is the anomalous expansivity of water
lora16 [44]

Answer:

The anomalous expansion of water is an abnormal property of water whereby it expands instead of contracting when the temperature goes from 4o C to 0o C, and it becomes less dense. The density is maximum at 4 degree centigrade and decreases below that temperature as shown in graph.

Explanation:do you want me to explain it more??

6 0
2 years ago
a pool ball leaves a 0.60-meter high table with an initial high table with an initial horizontal velocity of 2.4m/s. what is the
inysia [295]

Answer:

0.84 m

Explanation:

Given in the y direction:

Δy = 0.60 m

v₀ = 0 m/s

a = 9.8 m/s²

Find: t

Δy = v₀ t + ½ at²

0.60 m = (0 m/s) t + ½ (9.8 m/s²) t²

t = 0.35 s

Given in the x direction:

v₀ = 2.4 m/s

a = 0 m/s²

t = 0.35 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (2.4 m/s) (0.35 s) + ½ (0 m/s²) (0.35 s)²

Δx = 0.84 m

5 0
3 years ago
An automobile with passengers has weight 19.4 kN and is moving at 108 km/h when the driver brakes to a stop. The frictional forc
mixer [17]

Answer:

12.0

Explanation:

4 0
3 years ago
Other questions:
  • Which is more useful for storing thermal energy, the block of lead or the water in the calorimeter?
    9·1 answer
  • The amount of a good or service a
    10·1 answer
  • Keeping in mind the kinetic energy of a moving vehicle, how can a driver best prepare to enter sharp curves in the roadway
    5·2 answers
  • A sprinter in a 100-m race accelerates uniformly for the first 71 m and then runs with constant velocity. The sprinter’s time fo
    14·1 answer
  • In water, sound travels 1500 m/s. A whale sings at a frequency of 17 Hz. What will be the length of the sound wave?
    6·1 answer
  • Helpppppppp<br> ill give brainliest
    7·1 answer
  • A 750 kg car moving at 25 m/s has Kinetic Energy. To stop the car requires work. On snowy roads, the force of friction that can
    11·1 answer
  • Question 4 of 10 Which three components define a person's overall health? A. Mental and emotional health B. Social health C. Phy
    9·1 answer
  • What is the error in this representation of the steps involved in gene therapy?
    15·2 answers
  • A missile is moving 1810 m/s ata 20.0° angle. It needs to hit atarget 19,500 m away in a 32.0°direction in 9.20 s. What is thema
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!