1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
14

In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wave

length of 575 nm and the interference pattern observed on a screen 3.50 m from the slits.(a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen?(b) What is the difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern?
Physics
1 answer:
guajiro [1.7K]3 years ago
6 0

Answer:

Rounded to three significant figures:

(a) 2 \times 575\; \rm nm = 1150\; \rm nm = 1.15\times 10^{-6}\; \rm m.

(b) \displaystyle \left(1 + \frac{1}{2}\right) \times (575\;\rm nm) \approx 863\; \rm nm = 8.63\times 10^{-7}\; \rm m.

Explanation:

Consider a double-slit experiment where a wide beam of monochromatic light arrives at a filter with a double slit. On the other side of the filter, the two slits will appear like two point light sources that are in phase with each other. For each point on the screen, "path" refers to the length of the segment joining that point and each of the two slits. "Path difference" will thus refer to the difference between these two lengths.  

Let k denote a natural number (k \in \left\lbrace0,\, 1,\, 2,\, \dots\right\rbrace.) In a double-split experiment of a monochromatic light:

  • A maximum (a bright fringe) is produced when light from the two slits arrive while they were in-phase. That happens when the path difference is an integer multiple of wavelength. That is: \text{Path difference} = k\, \lambda.
  • Similarly, a minimum (a dark fringe) is produced when light from the two slits arrive out of phase by exactly one-half of the cycle. For example, The first wave would be at peak while the second would be at a crest when they arrive at the screen. That happens when the path difference is an integer multiple of wavelength plus one-half of the wavelength: \displaystyle \text{Path difference} = \left(k + \frac{1}{2}\right)\cdot \lambda.
<h3 /><h3>Maxima</h3>

The path difference is at a minimum (zero) at the center of the screen between the two slits. That's the position of the first maximum- the central maximum, a bright fringe where k = 0 in \text{Path difference} = 0.

The path difference increases while moving on the screen away from the center. The first order maximum is at k = 1 where \text{Path difference} = \lambda.

Similarly, the second order maximum is at k = 2 where \text{Path difference} = 2\, \lambda. For the light in this question, at the second order maximum: \text{Path difference} = 2\, \lambda = 2 \times 575\; \rm nm = 1.15\times 10^{-6}\; \rm m.

  • Central maximum: k = 0, such that \text{Path difference} = 0.
  • First maximum: k = 1, such that \text{Path difference} = \lambda.
  • Second maximum: k = 2, such that \text{Path difference} = 2\, \lambda.

<h3>Minima</h3>

The dark fringe closest to the center of the screen is the first minimum. \displaystyle \text{Path difference} = \left(0 + \frac{1}{2}\right)\cdot \lambda = \frac{1}{2}\, \lambda at that point.

Add one wavelength to that path difference gives another dark fringe- the second minimum. \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda at that point.

  • First minimum: k =0, such that \displaystyle \text{Path difference} = \frac{1}{2}\, \lambda.
  • Second minimum: k =1, such that \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda.

For the light in this question, at the second order minimum: \displaystyle \text{Path difference} = \left(1 + \frac{1}{2}\right)\cdot \lambda =  \left(1 + \frac{1}{2}\right)\times (575\; \rm nm) \approx 8.63\times 10^{-7}\; \rm m.

You might be interested in
49. A block is pushed across a horizontal surface with a
nata0808 [166]

Answer:

(a) 37.5 kg

(b) 4

Explanation:

Force, F = 150 N

kinetic friction coefficient = 0.15

(a) acceleration, a = 2.53 m/s^2

According to the newton's second law

Net force = mass x acceleration

F - friction force = m a

150 - 0.15 x m g = m a

150 = m (2.53 + 0.15 x 9.8)

m = 37.5 kg

(b) As the block moves with the constant speed so the applied force becomes the friction force.

F = \mu m g \\\\150 = \mu\times 37.5\\\\\mu = 4

8 0
3 years ago
Suppose you had used a less sensitive balance for the Archimedes method of getting volume of an object based on the difference i
alisha [4.7K]
<span>If you think about it, changing the scale to which something is measured does not affect the repeatability of the measurement. For instance, if you have a meter stick which was labeled incorrectly, that doesn't affect the fact that every measurement you take of a certain fixed distance will still be the same. Precision does not equal accuracy.</span>
8 0
3 years ago
Read 2 more answers
Things that are _______________________ cannot be broken down by living organisms.
Pavlova-9 [17]

Answer:

I would say the answer is Non-Biodegradable......eg, plastics, rubber, metals,etc.

HOPE THIS HELPS.

8 0
3 years ago
Where is visible light located on the electromagnetic spectrum?
nikklg [1K]
2 near the middle
between ultraviolet and infared
4 0
3 years ago
Read 2 more answers
When water freezes, what happens to the temperature of the surrounding air?
snow_tiger [21]
It gets warmer because the forming ice gives heat up
3 0
3 years ago
Other questions:
  • What caused rutherford to propose a revised model of the atom
    5·1 answer
  • A satellite orbits the earth a distance of 2.50 × 10^7 m above the planet’s surface and takes 6.43 hours for each revolution abo
    8·1 answer
  • Juggles the clown stands on one end of a teeter-totter at rest on the ground. Bangles the clown jumps off a platform 2.4 m above
    9·1 answer
  • Why is magnesium the limiting reactant in this experiment
    12·1 answer
  • Select the words that make the sentence a true statement.
    8·2 answers
  • Separating the electron from the proton in a hydrogen atom takes 2.18 ✕ 10−18 j of work. through what electric potential differe
    11·1 answer
  • En los sistemas que figuran acontinuación,indica de donde te parece que proviene la energía que usan y aclara si sólo utilizan o
    7·1 answer
  • What is the speed of a wave with a frequency of 100 hz and a wave length of .5 m?
    5·2 answers
  • Which options correctly describe the velocity of the object represented in the graph?
    14·1 answer
  • Which of jupiter’s moons is the largest moon in the solar system?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!