Answer:
I believe it is C. Their Temps.
Explanation:
Hope my answer has helped you!
The final temperature of the system is 32.5°
we know, H = mcT
where, H = Heat content of the body
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry
The net heat remains constant i.e.
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x

x (T - 10)
⇒ 14,850 - 330T = 183.21T - 1832
⇒ - 513.21 T = - 16682
or T = 32.5°
Answer:
Definitely Spinning permanent magnets within an array of fixed permanent magnets
Explanation:
Any relative motion between magnets (be they permanent or electromagnetic) and a coil of wire will induce an electric current in the coil.
What will not induce an electric current is the relative motion between the two coils of wire (because there is no change in magnetic field), or the relative motion between two magnets (there are no coils of wire to induce the current into).
<em>Therefore, spinning permanent magnets within an array of fixed permanent magnets does not induce an electric current.</em>
The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.
Given:
State 1:
p₁ = 10⁵ N/m² (Pa)
V₁ = 2 m³
State 2:
V₂ = 1 m³
Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
= 2 x 10⁵ Pa
Answer: 2 x 10⁵ N/m² or 2 atm.
I'm pretty sure the answer is gold