Answer:
20 Ω
Explanation:
Voltage, current, and resistance are related by Ohm's law:
V = IR
40 V = (4 A) R
R = 10 Ω
The total resistance of the circuit is 10 Ω.
Resistors in parallel have a total resistance of:
1/R = 1/R₁ + 1/R₂
1 / (10 Ω) = 1 / (20 Ω) + 1/R₂
R₂ = 20 Ω
P=M(mass)G(Gravity)H(Height)
Gravity=9.8
M=1.5 G=9.8 H=35
so multiply all
=514.5 potential energy
I think that the solar panel would work under a fluorescent or halogen light if the photons are being produced. These types of lights mimic sunlight so it would not work as good as the real thing but it could work. Just not be as powerful.
Answer:
There is an arrow up for air resistance and an arrow down for gravity. The arrow up is longer than the arrow down.
Explanation:
The text of the problem says that the skydiver is slowing down: this means that he has an acceleration, which is directed opposite to the motion of the skydiver. Since the motion is downward, the acceleration must be upward.
There are two forces acting on the skydiver: the gravity (downward) and the air resistance (upward). According to Newton's second law:
F=ma
the acceleration has the same direction of the net force, so the net force must also be upward: therefore, the air resistance must be greater than the gravity, so the arrow up for air resistance is longer than the arrow down for gravity.