Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
The answer is b, because if it gets colder then means more heat is exiting than it is entering.
The alignments of the planets would be the correct answer.<span />
Answer:
There's no passage but I can say that matter are that ''thing'' which extend through all Universe, matter is everything. It can be seen or felt as liquid, gas or solid. This changes of its state depend on the amount of energy that is involved.
So, here is used categorical thinking because is a abstract concept that is hard to understand sometimes. It's abstract when we say that matter is all, not just what we see, but even what we don't see like ''Dark Matter'', which is the majority in the Universe.
Answer:
The
solution has a higher osmotic pressure and higher boiling point than LiCl solution.
Explanation:
As concentrations of two aqueous solutions are same therefore we can write:
,
and 
where
,
and
are lowering of vapor pressure, elevation in boiling point and osmotic pressure of solution respectively.
is van't hoff factor.
= total number of ions generated from dissolution of one molecule of a substance (for strong electrolyte).
Here both
and LiCl are strong electrolytes.
So,
and 
Hence, lowering of vapor pressure, elevation in boiling point and osmotic pressure will be higher for
solution.
Therefore the
solution has a higher osmotic pressure and higher boiling point than LiCl solution.