Although lipids hold the majority of the body's energy reserves, glycogen is the body's primary energy source.
Glucose is a polymer that makes up glycogen. Our body's primary source of energy is carbs. The remaining glucose in the body is turned into glycogen and stored in various places, but the majority of our body's energy reserves are found in fats, which are kept in the form of lipids.
Where does the energy come from in the muscles?
The chemical energy that is stored in our meals is used by muscles to produce heat and motion energy (kinetic energy). Energy is necessary for maintaining body temperature, promoting physical activity, and enabling tissue growth and repair. Foods high in protein, fat, and carbohydrates provide energy.
What Takes Place to Muscles in the Absence of Glucose?
Your body converts carbs, such as those found in bread or fruit, into glucose after consumption. Glycogen is the form of glucose that is stored in your muscles and liver and is used for energy when you are not eating or while you are exercising.
To learn more about source of energy in body, visit
brainly.com/question/7493628
#SPJ13
The characteristic bright-line spectrum of an element is produced when its electrons return to lower energy levels To be in the ground state all electrons must be in their lowest energy state; all excited atoms must lose energy. The lost energy appears in the form of light. Hope this helped :)
Answer:
See explanation
Explanation:
The reaction equation is;
C3H8 (g) + 5O2(g) -------> 4H2O(g) + 3CO2(g)
From the formula;
Total enthalpy of reactants = (ΔHf of Reactant 1 x Coefficient) + (ΔHf of Reactant 2 x Coefficient)
Total enthalpy of products= (ΔHf of Product 1 x Coefficient) + (ΔHf of Product 2 x Coefficient)
Hence;
Total enthalpy of reactants =[(-103.85 * 1) + (0 * 5)] = -103.85 + 0 = -103.85 KJ/mol
Total enthalpy of products= [(-393.51 * 4) +(-241.82 * 3)] = (-1574.04) + (-483.64) = -2057.68 KJ/mol
Answer:
CO2 is a trigonal planar.