1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
3 years ago
7

Does the construction of a high building slow down the rotation of the earth

Physics
1 answer:
omeli [17]3 years ago
5 0
No, the building's size in comparison to the earth would have no change or change so increadibly miniscule, like if you were told to spin slowly and an and was placed on top of your head
You might be interested in
Make a rough estimate of the number of quanta emitted in one second by a 100 W light bulb. Assume that the typical wavelength em
mixas84 [53]

Answer:

#_photon = 5 10²⁰ photons / s

Explanation:

For this exercise let's calculate the energy of a single quantum of energy, use Planck's law

         E = h f

         c= λ f

         E = h c / λ

          λ= 1000 nm (1 m / 109 nm) = 1000 10⁻⁹ m

Let's calculate

          E₀ = 6.6310⁻³⁴ 3 10⁸/1000 10⁻⁹

          E₀ = 19.89 10⁻²⁰ J

This is the energy emitted by a photon let's use a proportions rule to find the number emitted in P = 100 w

                #_photon = P / E₀

               #_photon = 100 / 19.89 10⁻²⁰

              #_photon = 5 10²⁰ photons / s

6 0
3 years ago
a bus starting from rest moves with a uniform acceleration of 0.1 metre per second square for 2 minutes find the speed acquired
blondinia [14]
S ?
U 0m/s
V ?
A 0.1m/s^2
T 2min (120 sec)

S=ut+0.5at^2
S=0(120 sec)+0.5(0.1m/s^2)(120 sec)^2
S=720m

Distance double 720m*2=1440m

V^2=u^2+2as
V^2=(0)^2+2(0.1 m/s^2)(1440m)
V^2=288
V= square root of 288=12 root 2=16.97 to 2 decimal places
6 0
3 years ago
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is th
Darya [45]

Answer:

1.92 x 10⁻¹²J

Explanation:

The magnetic force from the magnetic field gives the circulating protons gives the particle the necessary centripetal acceleration to keep it orbiting round the circular path. And from Newton's second law of motion, the force(F) is equal to the product of the mass(m) of the proton and the centripetal acceleration(a). i.e

F = ma

Where;

a = \frac{v^2}{r}             [v = linear velocity, r = radius of circular path]

=> F = m\frac{v^2}{r}           ------------(i)

We also know that the magnitude of this magnetic force experienced by the moving charge (proton) in a magnetic field is given by;

F = q v B sin θ       ----------(ii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = the angle between the velocity and the magnetic field.

Combining equations (i) and (ii) gives

m\frac{v^2}{r} = q v B sin θ           [θ = 90° since the proton is orbiting at the maximum orbital radius]

=> m\frac{v^2}{r} = q v B sin 90°

=> m\frac{v^2}{r} = q v B

Divide both side by v;

=> m\frac{v}{r} = qB

Make v subject of the formula

v = \frac{qBr}{m}

From the question;

B = 1.25T

m = mass of proton = 1.67 x 10⁻²⁷kg

r = 0.40m

q = charge of a proton = 1.6 x 10⁻¹⁹C

Substitute these values into equation(iii) as follows;

v = \frac{(1.6*10^{-19})(1.25)(0.4)}{(1.67*10^{-27})}

v = 4.79 x 10⁷m/s

Now, the kinetic energy, K, is given by;

K = \frac{1}{2}mv²

m = mass of proton

v = velocity of the proton as calculated above

K = \frac{1}{2}(1.67*10^{-27} * (4.79 * 10^7)^2 )

K = 1.92 x 10⁻¹²J

The kinetic energy is 1.92 x 10⁻¹²J

8 0
3 years ago
What’s the formula for work
padilas [110]

Answer:

Fd

Explanation:

Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.

6 0
2 years ago
Read 2 more answers
Assume that a pendulum used to drive a grandfather clock has a length L0=1.00m and a mass M at temperature T=20.00°C. It can be
Sedaia [141]

Answer:

The period will change a 0,036 % relative to its initial state

Explanation:

When the rod expands by heat its moment of inertia increases, but since there was no applied rotational force to the pendulum , the angular momentum remains constant. In other words:

ζ= Δ(Iω)/Δt, where ζ is the applied torque, I is moment of inertia, ω is angular velocity and t is time.

since there was no torque ( no rotational force applied)

ζ=0 → Δ(Iω)=0 → I₂ω₂ -I₁ω₁ = 0 → I₁ω₁ = I₂ω₂

thus

I₂/I₁ =ω₁/ω₂ , (2) represents final state and (1) initial state

we know also that ω=2π/T , where T is the period of the pendulum

I₂/I₁ =ω₁/ω₂ = (2π/T₁)/(2π/T₂)= T₂/T₁

Therefore to calculate the change in the period we have to calculate the moments of inertia. Looking at tables, can be found that the moment of inertia of a rod that rotates around an end is

I = 1/3 ML²

Therefore since the mass M is the same before and after the expansion

I₁ = 1/3 ML₁² , I₂ = 1/3 ML₂²  → I₂/I₁ = (1/3 ML₂²)/(1/3 ML₁²)= L₂²/L₁²= (L₂/L₁)²

since

L₂= L₁ (1+αΔT) , L₂/L₁=1+αΔT  , where ΔT is the change in temperature

now putting all together

T₂/T₁=I₂/I₁=(L₂/L₁)² = (1+αΔT) ²

finally

%change in period =(T₂-T₁)/T₁ = T₂/T₁ - 1 = (1+αΔT) ² -1

%change in period =(1+αΔT) ² -1 =[ 1+18×10⁻⁶ °C⁻¹ *10 °C]² -1 = 3,6 ×10⁻⁴ = 3,6 ×10⁻² %  = 0,036 %

4 0
3 years ago
Other questions:
  • How many work is done when a force of 33n pulls wagon 13meters
    5·1 answer
  • The basis for defining the length of a day is the fact that question 21 options:
    12·1 answer
  • When neither plate is dense enough to sink into the asthenosphere, the result is a _____ plate boundary.
    7·1 answer
  • During the new moon phase, why is the Moon not visible in the sky?
    7·1 answer
  • If a force is exerted on an object, is it possible for that object to be moving with constant velocity?
    7·1 answer
  • runnin reggie ran up a mountain from an elevation of 915 m to 4095 m in 62.25 min. If Reggie has a mass of 70 kg, how much power
    14·1 answer
  • Oh no! The Hulk just fell off the Empire State Building! Calculate how long it took him to fall straight down from the top of th
    10·1 answer
  • In each of the following cases, determine where the car has no
    15·1 answer
  • Using a mass of 1. 8 g and the volume displaced by the sample, calculate the sample's density. Question 17 options: 0. 17 g/mL 0
    9·1 answer
  • How can wasted energy be made useful?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!