Pressure varies in the atmosphere because air molecules are being pulled down towards the center of the earth-hope this helps!
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>
Answer:
Number of moles = 2.8 mol
Explanation:
Given data:
Number of moles of water = ?
Volume of water = 50 mL
Density of water = 1.00 g/cm³
Solution:
1 cm³ = 1 mL
Density = mass/ volume
1.00 g/mL = mass/ 50 mL
Mass = 1.00 g/mL× 50 mL
Mass = 50 g
Number of moles of water:
Number of moles = mass/molar mass
Number of moles = 50 g / 18 g/mol
Number of moles = 2.8 mol
Answer:
The relative humidity is low
Explanation:
The higher the dew point rises, the greater the amount of moisture in the air. The lower the humidity, the lower the dew point. The dew point is low and thus water cannot exist in liquid state but as a gas.