Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;

where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;

If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4
The body will take 20 seconds to cover a distance of 1000 m i.e. 1 km
Answer:
The answers to your questions are given below
Explanation:
22. The energy of an electromagnetic wave and it's frequency are related by the following equation:
E = hf
Where:
E => is the energy
h => is the Planck's constant
f => is the frequency
From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.
23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.
Thus, gamma ray and radio wave have the same speed in space.