Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
# of atoms per mol = Avogadro’s # (6.022 x 10^23)
Number of mols = mass of substance / molar mass
73 g / 40.08 g = 1.8 mols of Ca in 73 grams
1.8 mols x avagadro’s # = 1.1 x 10^24 atoms in 73 grams of Ca
Answer:

Explanation:
From the question we are told that:
Chemical Reactions:
X=A⇌B,ΔG= 14.8 kJ/mol
Y=B⇌C,ΔG= -29.7 kJ/mol
Z=C⇌D,ΔG= 8.10 kJ/mol
Since
Hess Law
The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the number of steps taken.
Therefore
Generally the equation for the Reaction is mathematically given by

Therefore the free energy, ΔG is



the molar mass is how many grams it takes to make a full mole. The number in carbon 12 tells us that it takes 12 g to makes a mole, so one half of that would be <u><em>option d, 0.5</em></u>.
Answer: A. Is decomposition
B. Is synthesis where Na combines with Cl to form NaCl
C. Is single displacement or replacement. Mg displaces Cu.
Explanation: