Answer:

Explanation:
Hello there!
In this case, sine the solution of this problem require the application of the Raoult's law, assuming heptane is a nonvolatile solute, so we can write:

Thus, we first calculate the mole fraction of chloroform, by using the given masses and molar masses as shown below:

Therefore, the partial pressure of chloroform turns out to be:

Regards!
Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.
The answer is the first one, Xe
D 4 grams
i need to write a couple more character for explanation so there