Explanation:
Given that,
Initial speed of the rock, u = 30 m/s
The acceleration due to gravity at the surface of the moon is 1.62 m/s².
We need to find the time when the rock is ascending at a height of 180 m.
The rock is projected from the surface of the moon. The equation of motion in this case is given by :

It is a quadratic equation, after solving whose solution is given by:
t = 7.53 s
or
t = 8 seconds
(e)If it is decending, v = -20 m/s
Now t' is the time of descending. So,

Let h' is the height of the rock at this time. So,

or
h' = 155 m
- The net force is greatest at the position of maximum displacement
- The net force is zero when at the equilibrium position
Explanation:
The motion of a spring is a Simple Harmonic Motion, in which the displacement of the end of the spring is given by a periodic function of the form

where A is the amplitude (the maximum displacement), and
the angular frequency of the motion.
We can analyze the net force acting on the spring by looking at Hooke's law:

where
F is the net force
k is the spring constant
x is the displacement
From the equation, we notice immediately that:
- The net force is the greatest when the displacement x is the greates, so at the position in which the spring has maximum compression or stretching
- The net force is zero when the displacement x is zero, so when the spring crosses the equilibrium position
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
When flying the LNAV Approach, the missed approach point (MAP) would be indicated by reaching:
C. the RW30 waypoint.
Explanation:
- In Aviation, LNAV stands for Lateral Navigation. The option a is incorrect as an altitude of 3100 feet refers to the decision altitude not the missed approach point.
- The option b is incorrect as a distance of 1.5 NM to RW30 referring to the Visual descent point (VDP) is 1.5 nautical miles for the Runway (RW) 30 from threshold.
- The option c is correct as Missed approach point is designed to coincide with the runway threshold. The RW 30 way point is referring to the way point to the threshold for the Runway 30.
Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.
P.E = mgh
This is the formula for potential energy.
This is where m is mass, g is the acceleration due to gravity, and h is height.
All you have to do is multiply all these numbers together.