Answer:
125 cm³/min
Explanation:
The material rate of removal is usually given by the formula
Material Rate of Removal = Radial Depth of Cut * Axial Depth of Cut * Feed Rate, where
Radial Depth of Cut = 25 mm
Axial depth of cut = 200 mm
Feed rate = 25 mm/min
On multiplying all together, we will then have
MRR = 25 mm * 200 mm * 25 mm/min
MRR = 125000 mm³/min
Or we convert it to cm³/min and have
MRR = 125000 mm³/min ÷ 1000
MRR = 125 cm³/min
Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6
Answer:
see explaination
Explanation:
Balanced equation or stoichiometry equation means in a product after reaction there is no unburned carbon compound left or we can say the oxygen is sufficient to combine with all the carbon and hydrogen moleculs to form Carbon-dioxide and water respectively.
The dew point temperature of balanced equation will be 100°c because water vapour bis present in it and it will condense at 100°c at 1 bar pressure while the other products need much lower temperatures to liquify.
See attachment.
Answer:
A) ν = 0.292
B) ν = 0.381
Explanation:
Poisson's ratio = - (Strain in the direction of the load)/(strain in the direction at right angle to the load)
In axial tension, the direction of the load is in the length's direction and the direction at right angle to the load is the side length
Strain = change in length/original length = (Δy)/y or (Δx)/x or (ΔL/L)
A) Strain in the direction of the load = (2.49946 - 2.5)/2.5 = - 0.000216
Strain in the direction at right angle to the load = (7.20532 - 7.2)/7.2 = 0.0007389
Poisson's ratio = - (-0.000216)/(0.0007389) = 0.292
B) Strain in the direction of the load = (2.09929 - 2.1)/2.1 = - 0.0003381
Strain in the direction at right angle to the load = (5.30470 - 5.3)/5.3 = 0.0008868
Poisson's ratio = - (-0.0003381)/(0.0008868) = 0.381
203.2 centimeters.
This is because 1 inch = 2.54 centimeters which means multiply 80 inches X 2.54 = 203.2 centimeters.