200 ml is 1/5 of a liter, so the answer is five times the number of moles present in the solution. 0.6 moles/0.2 liter = x moles/1.0 liter. Solving for x gives 0.2 x = 0.6 or x = 3.0 M
so the answer is c
Earthquakes happen at Transform boundaries
Hello!
We have the following data:
Area (
A) = 50 square feet
Mass (
m) = 8.5 ounces
Density (
d) = 2.70 g/cm³
Volume (
V) = ?
Thickness (
T) =? (in mm)
To move on, we must transform the area of 50 ft² in cm², let's see:
1 ft² ------- 929,0304 cm²
50 ft² -----
A

In the same way, we will convert the mass of 8.5 oz in grams, see:
1 oz -------- 28,3495 g
8,5 oz -------
m

Knowing that the density is 2.70 g/cm³ and the mass is 240.97075 g, we will find the volume, applying the data in the density formula we have:



The statement wants to find the thickness of the packaging, for this we have some important data, such as: V (volume) = 89,25 cm³ and Area (A) = 46451,52 cm² and T (thickness) =? (in mm)
In the calculations of Costs in Surface Treatment of a part within the flat geometry, we will use the following formula:





We will convert to millimeters, going through a decimal place on the right

Hope this helps! :))
<u>Answer:</u> The volume of oxygen gas at STP is 446 mL
<u>Explanation:</u>
STP conditions are:
Pressure of the gas = 1 atm
Temperature of the gas = 273 K
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law. The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
We are given:

Putting values in above equation, we get:

Hence, the volume of oxygen gas at STP is 446 mL