Fahrenheit because the boiling point of water is 100 degrees Celsius which is 212 Fahrenheit which is very hot, and that would be about 200 Kelvin so therefore the answer is that the temperature was recorded in Fahrenheit not Kelvin or Celsius
Answer:
The magnitude of the resultant decreases from A+B to A-B
Explanation:
The magnitude of the resultant of two vectors is given by

where
A is the magnitude of the first vector
B is the magnitude of the second vector
is the angle between the directions of the two vectors
In the formula, A and B are constant, so the behaviour depends only on the function
. The value of
are:
- 1 (maximum) when the angle is 0, so the magnitude of the resultant in this case is

- then it decreases, until it becomes 0 when the angle is 90 degrees, where the magnitude of the resultant is

- then it becomes negative, and continues to decrease, until it reaches a value of -1 when the angle is 180 degrees, and the magnitude of the resultant is

Answer:
<h3>The answer is 0.59 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.59 m/s²</h3>
Hope this helps you
Answer:
The number of bright fringes per unit width on the screen is,
Explanation:
If d is the separation between slits, D is the distance between the slit and the screen and
is the wavelength of the light. Let x is the number of bright fringes per unit width on the screen is given by :

is the wavelength
n is the order
If n = 1,

So, the the number of bright fringes per unit width on the screen is
. Hence, the correct option is (B).
Answer:

Explanation:
Given that:
- mass of meteoroid,

- radial distance from the center of the planet,

- mass of the planet,

<u>For gravitational potential energy we have:</u>

substituting the respective values:

