Answer:
0.34148 m
Explanation:
= Resistivity of tungsten = 
d = Diameter = 0.0018 inch
r = Radius = 

= Temperature coefficient of tungsten = 
Power is given by

We have the equation
![R_2=R_1[1+\alpha(T_2-T_1)]\\\Rightarrow R_1=\dfrac{R_2}{1+\alpha(T_2-T_1)}\\\Rightarrow R_1=\dfrac{144}{1+0.0045(2550-25)}\\\Rightarrow R_1=11.64812\ \Omega](https://tex.z-dn.net/?f=R_2%3DR_1%5B1%2B%5Calpha%28T_2-T_1%29%5D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7BR_2%7D%7B1%2B%5Calpha%28T_2-T_1%29%7D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7B144%7D%7B1%2B0.0045%282550-25%29%7D%5C%5C%5CRightarrow%20R_1%3D11.64812%5C%20%5COmega)
Resistance is given by

The length of the filament is 0.34148 m
Velocity and acceleration are vector quantities whereas speed, temperature and age are not.
<h3>What is a vector quantity?</h3>
Vector is a quantity that has both magnitude and direction and is represented by an arrow whose direction is same as that of the quantity and length is proportional to the quantity's magnitude.
Vector has magnitude and direction but it does not have position. Velocity and acceleration both are vector quantities as they have magnitude and direction.
If the speed of an object remains same but direction changes then the object is accelerating. It is important to remember that acceleration and velocity aren't always in the same direction.
To know more about vector quantity, refer
brainly.com/question/626479
#SPJ1
Answer:

Explanation:
As per Faraday's law of Electromagnetic induction we know that
Rate of change in magnetic flux will induce EMF in the closed conducting loop
so we have

now we have


now we have

now the induced EMF through this loop is given as


