Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.
Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:

Answer:
Is to add all forces, for example either the gf = gravitational force
Ff= force fiction
Fn= normal force
Thus, fg + ff + fn = y will give you results
Well then the forces you use in your exercises or questions.