To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to
The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then
The amount of substance per volume is the density, then
Replacing with our values,
Finally the specific volume would be
NB: The diagram of the pulley system is not shown but the information provided is sufficient to answer the question
Answer:
Power = 2702.56 W
Explanation:
Let the power consumed be P
Energy expended = E = mgh
height, h = 5 m
E = 80 * 9.8 * 5
E = 3920 J
To calculate the time, t
From F = ma
F = 900 N
900 = 80 a
a = 900/80
a = 11.25 m/s²
From the equation of motion,
The drill head starts from rest, u = 0 m/s
Power, P = E/t
P = 3920/0.0.943
P = 4157.79 W
But Efficiency, E = 0.65
P = 0.65 * 4157.79
Power = 2702.56 W
1350kgm/s
Explanation:
Given parameters:
Mass of Sam = 75kg
Velocity = 18m/s
Unknown:
Momentum = ?
Solution:
Momentum is the property of a moving body with respect to its mass and velocity.
Objects in motion have momentum. The more the velocity of a body, the more its momentum. Also, the more the mass of an object, the more momentum it possess.
Momentum is a function of the mass and the velocity of a body
Momentum = mass x velocity
Momentum = 75 x 18 = 1350kgm/s
learn more:
Conservation of momentum brainly.com/question/2990238
#learnwithBrainly
Answer:
Light does not need a medium to travel travel through, but since waves must have a medium to vibrate, sound is not created where no air is present.
Explanation: