1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
13

An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in

the cord is 11.20 N. Find the total volume and the density of the sample.
Physics
1 answer:
valkas [14]3 years ago
3 0

Answer:

Volume of the sample: approximately \rm 0.6422 \; L = 6.422 \times 10^{-4} \; m^{3}.

Average density of the sample: approximately \rm 2.77\; g \cdot cm^{3} = 2.778 \times 10^{3}\; kg \cdot m^{3}.

Assumption:

  • \rm g = 9.81\; N \cdot kg^{-1}.
  • \rho(\text{water}) = \rm  1.000\times 10^{3}\; kg \cdot m^{-3}.
  • Volume of the cord is negligible.

Explanation:

<h3>Total volume of the sample</h3>

The size of the buoyant force is equal to \rm 17.50 - 11.20 = 6.30\; N.

That's also equal to the weight (weight, m \cdot g) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with g.

\displaystyle m = \frac{m\cdot g}{g} = \rm \frac{6.30\; N}{9.81\; N \cdot kg^{-1}} \approx 0.642\; kg.

Assume that the density of water is \rho(\text{water}) = \rm  1.000\times 10^{3}\; kg \cdot m^{-3}. To the volume of water displaced from its mass, divide mass with density \rho(\text{water}).

\displaystyle V(\text{water displaced}) = \frac{m}{\rho} = \rm \frac{0.642\; kg}{1.000\times 10^{3}\; kg \cdot m^{-3}} \approx 6.42201 \times 10^{-4}\; m^{3}.

Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.

V(\text{sample}) = V(\text{water displaced}) \approx \rm 6.422\times 10^{-4}\; m^{3}.

<h3>Average Density of the sample</h3>

Average density is equal to mass over volume.

To find the mass of the sample from its weight, divide with g.

\displaystyle m = \frac{m \cdot g}{g} = \rm \frac{17.50\; N}{9.81\; N \cdot kg^{-1}} \approx 1.78389 \; kg.

The volume of the sample is found in the previous part.

Divide mass with volume to find the average density.

\displaystyle \rho(\text{sample, average}) = \frac{m}{V} = \rm \frac{1.78389\; kg}{6.42201 \times 10^{-4}\; m^{3}} \approx 2.778\; kg \cdot m^{-3}.

You might be interested in
The resistance of a wire depends on
Orlov [11]

Answer:

b

Explanation:

because all are factors that determine the resistivity of a material

6 0
2 years ago
The greater the mass is in an object, the higher resistance to a change in movement the object will have. Please select the best
Fofino [41]
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
3 0
3 years ago
One mole of magnesium (6 × 1023 atoms) has a mass of 24 grams, as shown in the periodic table on the inside front cover of the t
natka813 [3]

This question involves the concepts of density, volume, and mass.

The approximate diameter of a magnesium atom is "3.55 x 10⁻¹⁰ m".

<h3>STEP 1 (FINDING MASS OF INDIVIDUAL ATOM)</h3>

It is given that:

Mass of one mole = 24 grams

Mass of 6 x 10²³ atoms = 24 grams

Mass of 1 atom = \frac{24\ grams}{6\ x\ 10^{23}\ atoms} = 4 x 10⁻²³ grams

<h3>STEP 2 (FINDING VOLUME OF A SINGLE ATOM)</h3>

\rho = \frac{m}{V}\\\\V=\frac{m}{\rho}

where,

  • \rho = density = 1.7 grams/cm³
  • m = mass of single atom = 4 x 10⁻²³ grams
  • V = volume of single atom = ?

Therefore,

V=\frac{4\ x\ 10^{-23}\ grams}{1.7\ grams/cm^3}

V = 2.35 x 10⁻²³ cm³

<h3>STEP 3 (FINDING DIAMETER OF ATOM)</h3>

The atom is in a spherical shape. Hence, its Volume can be given as follows:

V =\frac{\pi d^3}{6}\\\\d=\sqrt[3]{ \frac{6V}{\pi}}\\\\d=\sqrt[3]{ \frac{6(2.35\ x\ 10^{-23}\ cm^3)}{\pi}}

d = 0.355 x 10⁻⁷ cm = 3.55 x 10⁻¹⁰ m

Learn more about density here:

brainly.com/question/952755

7 0
2 years ago
Two students are sitting 1.50 m apart. One student has a mass of 70.0 kg and
Galina-37 [17]

Answer:

1.08x10⁻⁷

Explanation:

F=(GM₁M₂)/r²

=((6.67x10⁻¹¹)(70)(52))/(1.5²)

=2.42788x10⁻⁷/2.25

=1.07905778x10⁻⁷

≈1.08x10⁻⁷

3 0
3 years ago
A boy and his skateboard have a combined mass of 65 kg. What is the speed of the boy and skateboard if they have a momentum of 2
Yanka [14]
4.2m/s. Momentum=mass x velocity so 275/65=velocity=4.23
3 0
2 years ago
Read 2 more answers
Other questions:
  • Is it correct to say that constant speed = 0 acceleration = no resultant force?
    13·1 answer
  • A particle with a charge of 2e moves between two points which have a potential difference of 75V. What is the change in potentia
    13·1 answer
  • A geneticist looks through a microscope to determine the phenotype of a fruit fly. The microscope is set to an overall magnifica
    8·1 answer
  • An k incline plane has 2 = 40.0º and : = 0.15. Starting from rest, how long will it take a 4.0 kg block to reach a speed of 12 m
    14·2 answers
  • What force resists the motion of an object moving through a fluid?
    15·2 answers
  • What amount of charge passes through a 3.0 amp television in 1.3 hours?
    7·1 answer
  • studyhero A violin string has a length, from the bridge to the end of the fingerboard, of 50 cm. That section of the string has
    8·1 answer
  • A sound wave traveling through a solid material has a frequency of 400 hertz. the wavelength of the sound wave is 2 meters. what
    7·1 answer
  • A 1250-kg car moves at 20.0 m/s. How much work must be done on the car to increase its speed to 30.0 m/s.
    11·1 answer
  • 40 POINTS I’ve been stuck on this for hours please help :(
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!