Answer:
hello your question has some missing values attached below is the complete question with the missing values
answer :
a) 0.083 secs
b) 0.33 secs
c) 3e^-4/3
Explanation:
Given that
g = 32 ft/s^2 , spring constant ( k ) = 2 Ib/ft
initial displacement = 1 ft above equilibrium
mass = weight / g = 4/32 = 1/8
damping force = instanteous velocity hence β = 1
a<u>)Calculate the time at which the mass passes through the equilibrium position.</u>
time mass passes through equilibrium = 1/12 seconds = 0.083
<u>b) Calculate the time at which the mass attains its extreme displacement </u>
time when mass attains extreme displacement = 1/3 seconds = 0.33 secs
<u>c) What is the position of the mass at this instant</u>
position = 3e^-4/3
attached below is the detailed solution to the given problem
Answer:
Explanation:
Refractive Index: It is a measure to find how fast the light travels through a medium. It is ration of the speed of light in vacuum to speed of light in the medium. Speed of light is not constant and varies depending on the density of the medium.
In vacuum the speed of light is 300000 km/s and is denoted by c. When the light beam enters any medium the speed will decrease. Here it is given that the speed in plastic is v. Thus the refractive index(n) is given as:
It is a dimensionless no.
In my opinion, calling exercise "work" wouldn't be a good way of describing it, I don't think people would exercise if its called work
Answer:
1.6 m/s^2
Explanation:
Hello!
To calculate the acceleration we must know the electric field. The electric field and the potential are related by:
If the particle starts at 2.3m, the electric field is:
E = 36.869 V/m = 36.869 N/C
So, the force on the particle is:
F = q E = 2.3×10^−6 C * 36.869 N/C = 8.48 x 10^-5 N
And its acceleration is :
a = F/m = 8.48 x 10^-5 N / 5.4×10−5 kg = 1.57 m/s^2
Rounded to two significant figures:
1.6 m/s^2
Answer:
he gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation )