Answer:
Molar mass of vitamin K = 450.56\frac{g}{mol}[/tex]
Explanation:
The freezing point of camphor = 178.4 ⁰C
the Kf of camphor = 37.7°C/m
where : m = molality
the relation between freezing point depression and molality is
Depression in freezing point = Kf X molality
Where
Kf = cryoscopic constant of camphor
molality = moles of solute dissolved per kg of solvent.
putting values
2.69°C = 37.7°C/m X molality
molality = 0.0714 mol /kg

moles of vitamin K = 0.0714X0.025 = 0.00178 mol
we know that moles are related to mass and molar mass of a substance as:

For vitamin K the mass is given = 0.802 grams
therefore molar mass = 
1. How is the modern periodic table organized? Increasing atomic number
2. What information about an atom's properties can you read from the periodic table? Metal or not metal. Does it want to gain or lose electrons
3. How are the relationships of elements in a group different from the relationships of elements in a period? a group will have similar properties A period will have different properties
4. Would you expect Strontium (Sr) to be more like potassium (K) or bromine (Br)?
potassium
5. Barium (Ba) is in Group 2. Recall that atoms in Group 1 lose one electron to form ions with a 1+ charge. What type of ion does barium form? Ba+2
Answer:
Explanation:
Heat required to convert ice to ice at 0⁰C
= mass x specific heat x rise in temperature
= 18 x 2.09 x 20
= 752.4 J .
heat required to convert ice at 0⁰C to water at 0⁰C
mass x latent heat of fusion
= 18 x 336
= 6048 J
Heat required to increase the temperature of water to 100⁰C
= 18 x 4.2 x 100
= 7560 J
Total heat required
7560 + 6048 + 752.4
= 14360.4 J
Answer:
active transport
Explanation:
Active transport -
It refers to the movement of the molecules from a region of lower concentration towards a region of higher concentration via a membrane , is referred to as active transport.
The process of active transport need to have some cellular energy .
Hence,
The concentration of potassium is maintained in the red blood cells via the process of active transport.
Answer:
protons and neutrons
Explanation:
those particles account for 99.99% of mass