Here it is given that initial speed of the package will be same as speed of the helicopter

displacement of the package as it is dropped on ground

acceleration is due to gravity

now by kinematics



by solving above equation we have

so it will take 5.2 s to reach the ground
Answer:
A generator turns rotary motion into electricity. It is basically the inverse of a motor. Generally a transformer changes one voltage into another based on the number of conductor windings on each side. There are two sets of windings called the “primary” and the “secondary”.
Explanation:
Answer:
R = 98304.75 m = 98.3 km
Explanation:
The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.
Density = Mass/Volume
Now, it is given that the density of Earth has become:
Density = 1 x 10⁹ kg/m³
Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg
Volume = 4/3πR³ (Volume of Sphere)
R = Radius of Earth = ?
Therefore,
1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]
4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)
R³ = (3/4)(5.97 x 10¹⁵ m³)/π
R = ∛[0.95 x 10¹⁵ m³]
<u>R = 98304.75 m = 98.3 km</u>
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.
Answer:
So they can last longer and have more grip than normal on-road cars. They need that in order for them to run well
Explanation: