A prokaryotic cell is a cell without a nucleus (there's more to it, though).
Let's start from the bottom.
Strawberry plant: Plant cells are eukaryotic (cells have nucleus).
Hippopotamus: Animal cells are eukaryotic (cells have nucleus).
Paramecium: That's an animal, and animal cells are eukaryotic (cells have nucleus).
Bacterium: Perfect! Bacterium are prokaryotes! (cells don't have nucleus).
Your answer is bacterium.
Have an awesome day! :)
<span>You may already know that when you breathe in, your body takes in oxygen from the air. When you breathe out, your lungs expel carbon dioxide back into the air. But the breath you breathe out contains more than just carbon dioxide.</span>
When you exhale (breathe out), your breath also containsmoisture. Because your mouth and lungs are moist, each breath you exhale contains a little bit of water in the form of water vapor(the gas form of water).
For water to stay a gas in the form of water vapor, it needs enough energy to keep its molecules moving. Inside your lungs where it's nice and warm, this isn't a problem.
Answer:
The water cycle, also known as the hydrologic cycle or the hydrological cycle, describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor. Hope this helps, mark as brainliest please!
Answer: Temperature = T, unknown
Saturated Solution, NH4Cl concentration = 60g/100g H2O = 0.6g NH4Cl/g H2O
Assume density of H2O = 1 g/ml
m = 0.6g NH4Cl/g H2O / 1 g/ml
m = 0.6g NH4Cl/ml
See the table of saturated solutions and identify the temperature at which the concentration of NH4Cl is 60g/100g H2O.
Explanation: The line on the graph on reference table G indicates a saturated solution of NH4CL as a concentration of 60. g NH4 Cl/100. g H2O