m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
I don't think that 4m has anything to do with the problem.
anyway. here.
A___________________B_______C
where A is the point that the train was released.
B is where the wheel started to stick
C is where it stopped
From A to B, v=2.5m/s, it takes 2s to go A to B so t=2
AB= v*t = 2.5 * 2 = 5m
The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m
then BC= AC-AB = 7.7-5 = 2.7m
now consider BC
v^2=u^2+2as
where u is initial speed, in this case is 2.5m/s
v is final speed, train stop at C so final speed=0, so v=0
a is acceleration
s is displacement, which is BC=2.7m
substitute all the number into equation, we have
0^2 = 2.5^2 + 2*a*2.7
0 = 6.25 + 5.4a
a = -6.25/5.4 = -1.157
so acceleration is -1.157m/(s^2)
It is false, bounded rationality is the idea that rationality is limited when individuals make decisions. ... Limitations include the difficulty of the problem requiring a decision, the cognitive capability of the mind, and the time available to make the decision.
But one thing, NEXT TIME TELL US THE QUESTION FIRST AND DON'T JUST LEAVE BLINDLY ASKING SOMETHING.
1) Frequency: 
the energy of the photon absorbed must be equal to the ionization enegy of the atom, which is

The energy of a photon is given by

where
is the Planck's constant. By using the energy written above and by re-arranging thsi formula, we can calculate the frequency of the photon:

2) Wavelength: 91.2 nm
The wavelength of the photon can be found from its frequency, by using the following relationship:

where
is the speed of light and f is the frequency. Substituting the frequency, we find

Answer:
final displacement lf = 0.39 m
Explanation:
from change in momentum equation:
![\delta p = m \sqrt(2g * y/x)* [\sqrt li + \sqrt lf]](https://tex.z-dn.net/?f=%5Cdelta%20p%20%3D%20m%20%5Csqrt%282g%20%2A%20y%2Fx%29%2A%20%5B%5Csqrt%20li%20%2B%20%5Csqrt%20lf%5D)
given: m = 0.4kg, y/x = 19/85, li = 1.9 m,
\delta p = 1.27 kg*m/s.
putting all value to get the final displacement value
![1.27 = 0.4\sqrt(2*9.81 *(19/85))* [\sqrt 1.9 + \sqrt lf]](https://tex.z-dn.net/?f=1.27%20%3D%200.4%5Csqrt%282%2A9.81%20%2A%2819%2F85%29%29%2A%20%5B%5Csqrt%201.9%20%2B%20%5Csqrt%20lf%5D)
final displacement lf = 0.39 m