Answer:
not clear pic...but it's definitely not A)
First, find the amount of time for the dart to hit the board using this equation: t = d/v
t = 2 m/ 15 m/s = 0.133 s
Then, find the height the dart has fallen from its initial point using this equation: h = 0.5gt²
h = 0.5(9.81 m/s²)(0.133 s)² = 0.0872 m or 8.72 cm
Since the diameter of the bull's eye is only 5 cm, and you started at the same level of the top of the bull's eye, that means the maximum allowance would only be 5 cm. Since it exceeded to 8.72 cm, it means that <em>Veronica will not hit the bull's eye.</em>
Explanation:
Given that,
Mass of Nichrome, m = 0.5 g
The resistance of the wire, R = 0.673 ohms
Resistivity of the nichrome wire,
Density,
(A) The length of the wire is given by using the definition of resistance as :
Volume,
Area,
....(1)
(b) Equation (1) becomes :
Hence, this is the required solution.
Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
Answer:
(a) The energy of the photon is 1.632 x J.
(b) The wavelength of the photon is 1.2 x m.
(c) The frequency of the photon is 2.47 x Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
- = -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x )
- = 1.632 x Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x Js), c is the speed of light (3 x m/s) and λ is the wavelength.
10.20(1.6 x ) = (6.6 x * 3 x )/ λ
λ =
= 1.213 x
Wavelength of the photon is 1.2 x m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x = 6.6 x x f
f =
= 2.47 x Hz
Frequency of the emitted photon is 2.47 x Hz.