Answer:
More than 2,000 Years Ago, the Greek philosopher Aristotle suggested a model of the solar system. Aristotle's model was geocentric, or Earth-centered. In the model. the sun, stars, planets revolved around the Earth. In 150 AD an astrologer named Ptolemy began to support Aristotle's geocentric model.
In 1543 AD, an astronomer named Copernicus proposed a heliocentric model of the solar system. In this model, the planets revolve around the sun. Due to the invention of the telescope, the solar system could be explored in more detail. Galileo used the telescope to support Copernicus's theory of the sun being the center of the universe.
In the late 1500's, Kepler developed a law that explained planetary motion. Kepler's law is so accurate we still use them today.
Explanation:
Can you show me the rest of the question? I can not see it. Also, I know this is multiple choice fill in the blanks so I might be wrong. I hope that this helped though. This took a lot of research. The websites I used are commented down below. |
\|/
C. a symmetrical molecule is always nonpolar
Answer:
The answer is C. Gas particles have no attractive forces between them.
Explanation:
Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
Matematically speaking, maybe because:
The number of substances = number of elements + number of different combinations of those elements