Explanation:
It should be seen that perhaps the intensity of Ebony timber is greater than the concentration. This can drown if this is heavier than water, but that will floating whether it is not viscous than air.
<u>M</u><u>e</u><u>t</u><u>h</u><u>a</u><u>n</u><u>e</u><u> </u>is a carbon compound which undergoes combustion to <em><u>release energy</u></em> and form bi production which are <u>Carbon</u><u> </u><u>dioxide</u><u> </u>( CO2 )<u> </u><u>and</u><u> </u> <u>W</u><u>ater</u> ( H20 ).
the balanced chemical equation for the reaction is : -
These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
Answer:
Calcium ions.
Explanation:
The generation of the action potential helps in the transfer of information to the different body parts. This potential occurs to the difference in membrane potential inside and outside of the cell.
The sarcoplasmic reticulum is the homologous to the endoplasmic reticulum of the cells. The sarcoplasmic reticulum contains calcium ions in it and releases the stored calcium ions on the generation of the action potential. This calcium ion is important for the action of the actin and myosin.
Thus, the correct answer is option (D).