Answer:
0.8078 Kg
Explanation:
Pressure of water = 0.15 MPa = 1.5 bar
At critical point of water ,temperature = 647 K=374°C
From the ideal gas equation
P×V= m×R×T
Let us assume volume = 1 m^3
1.5 x 105 x 1 = m x 287 x 647
m= 0.8078 kg
the fraction of mass of liquid at 25°C.
mole is the standardized form of molarity
Answer:
A) increasing dispersion interactions
Explanation:
Polarizability allows gases containing atoms or nonpolar molecules (for example, to condense. In these gases, the most important kind of interaction produces <em>dispersion forces</em>, <em>attractive forces that arise as a result of temporary dipoles induced in atoms or molecules.</em>
<em>Dispersion forces</em>, which are also called <em>London forces</em>, usually <u>increase with molar mass because molecules with larger molar mass tend to have more electrons</u>, and <u>dispersion forces increase in strength with the number of electrons</u>. Furthermore, larger molar mass often means a bigger atom whose electron distribution is more easily disturbed because the outer electrons are less tightly held by the nuclei.
Because the noble gases are all nonpolar molecules, <u>the only attractive intermolecular forces present are the dispersion forces</u>.
Tons of wind, rain, thunder. Stuff like that.
Answer:
The number of sulfur atoms in 1 g of sulfur is:-
atoms
Explanation:
Avogadro’s number represent the number of the constituent particles which are present in one mole of the substance. It is named after scientist Amedeo Avogadro and is denoted by
.
Avogadro constant:-

Given atomic mass of sulfur = 32 u
Which means that:-
32 g of sulfur contains
of atoms
Also,
1 g of sulfur contains
of atoms
<u>So, The number of sulfur atoms in 1 g of sulfur is:-
atoms</u>