Answer:
B
Explanation:
Heat flows from hot to cold to lower the temperature of hot areas and increase temperature of cold areas. The end result is that the 2 areas have the same temperature, thus increasing entropy.
Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.
Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
From the case we know that:
- The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
- The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
- The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².
Please refer to the image below.
We know from the case, that:
m = 2M
r = R
m2 = 1/2M
distance between the center of mass to point P = p = R
Distance of the point mass to point P = d = 2R
We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:
Icm = 1/2mr²
Icm = 1/2(2M)(R²)
Icm = MR² ... (i)
Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:
Ip = Icm + mp²
Ip = MR² + (2M)R²
Ip = 3MR² ... (ii)
Then, the total moment of inertia of the disk with the point mass is:
I total = Ip + I mass
I total = 3MR² + (1/2M)(2R)²
I total = 3MR² + 2MR²
I total = 5MR² ... (iii)
Learn more about Uniform Flat Disk here: brainly.com/question/14595971
#SPJ4
Answer:A converging lens is thickest in the middle and causes parallel light rays to converge through the focal point on the opposite side of the lens. A diverging lens is thinner in the middle and causes parallel light rays to diverge away from the focal point on the same side of the lens.
Explanation: