The equivalent capacitance between A and B points is 2.5F.
<h3>What is parallel plate capacitor?</h3>
The two parallel plates placed at a distance apart used to store charge when electric supply is on.
The capacitance of a capacitor is given by
C = ε₀ A/d
From the given circuit C1, C2 and C3, C4 are in parallel C1=4F, C2=4F, C3=2F, C4=4F, C5= 9.2 F
C1, C2 = 4 +4 =8F
C3, C4 = 2 +4 =6F
Now , all capacitors are in series.
Total equivalent capacitance is
1 / Ceq = 1/ 8 +1/6 +1/ 9.2
Ceq = 2.5 F
Thus, the equivalent capacitance between A and B points is 2.5F.
Learn more about parallel plate capacitor.
brainly.com/question/12733413
#SPJ1
Answer:
The temperature of the Aluminium plate 44.84⁰C
Explanation:
Number of transistors = 4
Since the heat dissipated by each transistor is 12W
Total heat dissipated, Q = 4 * 12 = 48 W
Q = 48 W
Cross sectional Area of the Aluminium plate, A = 2(l * b)
l = Length of the aluminium plate = 22 cm = 0.22 m
b = width of the aluminium plate = 22 cm = 0.22 m
A =2( 0.22 * 0.22 )
A = 0.0968 m²
From the heat balance equation, Q = hAΔT
h = 25 W/m²·K
A = 0.0968 m²
ΔT = T - T(air)
T(air) = 25°C
ΔT = T - 25°C
Q = 25 * 0.0968 * ( T - 25)
Q = 2.42 (T - 25)
Substitute Q = 48 into the equation above
48 = 2.42 (T - 25)
T - 25 = 19.84
T = 25 + 19.84
T = 44.84 ⁰C
Answer:
A
Explanation:
Because Jessica pushes a 25 kilogram cart a distance of 10 meters.
A physical quantity is defined as mass per uint volume .what is its si unit.
A physical quantity is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as the combination of a numerical value and a unit. For example, the physical quantity mass can be quantified as n kg, where n is the numerical value and kg is the unit. A physical quantity possesses at least two characteristics in common, one is numerical magnitude and other is the unit in which it is measured.
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²