Answer:
The child's mass is 14.133 kg
Explanation:
From the principle of conservation of linear momentum, we have;
(m₁ + m₂) × v₁ + m₃ × v₂ = (m₁ + m₂) × v₃ - m₃ × v₄
We include the negative sign as the velocities were given as moving in the opposite directions
Since the child and the ball are at rest, we have;
v₁ = 0 m/s and v₂= 0 m/s
Hence;
0 = m₁ × v₃ - m₂ × v₄
(m₁ + m₂)× v₃ = m₃ × v₄
Where:
m₁ = Mass of the child
m₂ = Mass of the scooter = 2.4 kg
v₃ = Final velocity of the child and scooter = 0.45 m/s
m₃ = Mass of the ball = 2.4 kg
v₄ = Final velocity of the ball = 3.1 m/s
Plugging the values gives;
(m₁ + 2.4)× 0.45 = 2.4 × 3.1
(m₁ + 2.4) = 16.533
∴ m₁ + 2.4 = 16.533
m₁ = 16.533 - 2.4 = 14.133 kg
The child's mass = 14.133 kg.
<h2>
Answer: 10615 nm</h2>
Explanation:
This problem can be solved by the Wien's displacement law, which relates the wavelength
where the intensity of the radiation is maximum (also called peak wavelength) with the temperature
of the black body.
In other words:
<em>There is an inverse relationship between the wavelength at which the emission peak of a blackbody occurs and its temperature.</em>
Being this expresed as:
(1)
Where:
is in Kelvin (K)
is the <u>wavelength of the emission peak</u> in meters (m).
is the <u>Wien constant</u>, whose value is 
From this we can deduce that the higher the black body temperature, the shorter the maximum wavelength of emission will be.
Now, let's apply equation (1), finding
:
(2)
Finally:
This is the peak wavelength for radiation from ice at 273 K, and corresponds to the<u> infrared.</u>
Answer:
<h2>9,226,250 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

v is the velocity
m is the mass
From the question we have

We have the final answer as
<h3>9,226,250 J</h3>
Hope this helps you
115.35 ft
Set the proportion up 37.50/105.50 = 41/x and solve for x