When you breathe in, or inhale, your diaphragm contracts (tightens) and moves downward. This increases the space in your chest cavity, into which your lungs expand. The intercostal muscles between your ribs also help enlarge the chest cavity. They contract to pull your rib cage both upward and outward when you inhale.
Answer:
(I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Explanation:
Given that,
Radius of aorta = 10 mm
Speed = 300 mm/s
Radius of capillary 
Speed of blood 
(I). We need to calculate the effective cross sectional area of the capillaries
Using continuity equation

Where. v₁ = speed of blood in capillarity
A₂ = area of cross section of aorta
v₂ =speed of blood in aorta
Put the value into the formula



(II). We need to calculate the approximate number of capillaries
Using formula of area of cross section


Put the value into the formula


Hence, (I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Answer:
The answer is below
Explanation:
Charlee's law states that the volume of a gas is directly proportion to the temperature of the gas at constant pressure. That is:
V = kT, where V = volume and T = temperature, k = constant. Therefore:
V / T = k

Given that: 
The new volume is 3.41 m³. That is it expands by 0.41 m³
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275