Answer:
calculating displacement.
Explanation:
It's not true that displacement and distance would be the same always. Displacement is always smaller than or equal to distance as it is the smallest path between the initial and final point whereas distance is the measure of the total path covered.
In a free body diagram for an object projected upwards;
- the acceleration due to gravity on the object is always directed downwards.
- the velocity of the object is always in the direction of the object's motion.
An object projected upwards is subjected to influence of acceleration due to gravity.
As the object accelerates upwards, its velocity decreases until the object reaches maximum height where its velocity becomes zero and as the object descends its velocity increases, which eventually becomes maximum before the object hits the ground.
To construct a free body diagram for this motion, we consider the following;
- the acceleration due to gravity on the object is always directed downwards
- the velocity of the object is always in the direction of the object's motion.
<u>For instance:</u>
upward motion for velocity ↑ downward motion for velocity ↓
↑ ↓
↑ ↓
acceleration due to gravity ↓
↓
↓
Learn more here: brainly.com/question/13235430
Answer:
applied force
Explanation:
any force where you push or pull is always applied force.
Answer: C, constant, you’re welcome
Answer:
D By looking all the way to the cosmological horizon, we can see the actual conditions that prevailed all the way back to the first instant of the Big Bang.
Explanation:
Astrophysicists are able to determine the conditions that existed in the early universe, by using instruments such as telescopes to observe and study cosmic horizons. More ideas about the early universe can be found from the thermal light present in cosmic backgrounds.
Scientists study these details that provide an insight into the conditions that existed so many years ago. They have been able to determine that the Big Bang involved so many collisions from these observations.