Answer:
that pressure is called atmospheric pressure or air pressure. It is the force exerted on a surface by the air above is as gravity pulls it to earth. atmospheric pressure is commonly measured with a barometer. In a barometer , a column of mercury is a glass tube rises ot falls as the weight of the atmospheric changes
Answer:
V₂ = 1.5 L
Explanation:
Given data:
Initial volume of balloon = 1.76 L
Initial temperature = 295 K
Final temperature = 253.15 K
Final volume = ?
Solution:
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1.76 L ×253.15 K / 295 K
V₂ = 445.54 L.K /295 K
V₂ = 1.5 L
Molality is one way of expressing concentration for solutions. It has units of moles of solute per kg of solvent. From the given values, we easily calculate for the moles of solute by multiplying the mass of solvent to the molality. We do as follows:
moles solute = 0.3 (10) = 3 mol solute
Answer:
[HOCH₂CH₂OH] = 24.1 m
Explanation:
Ethylene glycol → HOCH₂CH₂OH
60% by mass means that 60 g of ethylene glycol are contained in 100 g of solution.
Solution mass = Solute mass + Solvent mass
100 g = 60 g + Solvent mass
Solvent mass = 40 g
Molality are the moles of solute contained in 1kg of solvent.
We determine the moles of solute → 60 g . 1mol/62 g = 0.967 moles
We convert the mass of solvent from g to kg → 40 g . 1kg/1000 g = 0.04 kg
Molality → 0.967 mol / 0.04 kg = 24.1 m