The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.
When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
To learn more about energy
brainly.com/question/582060
#SPJ4
Small tracks of water are left on the ice as kinetic energy is transformed into thermal energy
The ratio of the distance moved by the point at which the effort is applied in a simple machine to the distance moved by the point at which the load is applied, in the same time. In the case of an ideal (frictionless and weightless) machine, velocity ratio = mechanical advantage. Velocity ratio is sometimes called distance ratio.
Answer: To determine acceleration ,Micah also needs the Time of the total trip in seconds.
Explanation:
Acceleration can be defined as rate of change of velocity.

for calculating acceleration, initial and final velocity are required in meter per second and the total time of the trip in seconds. Then acceleration is measured in meter per second square.
Thus, Micah knows that a car had a change in velocity of 15 m/s.To determine acceleration ,Micah also needs the <u>Time</u> of the total trip in seconds.
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>