Answer:
Explanation:
We shall apply Ampere's circuital law to find out magnetic field . It is given as follows.
∫B.dl = μ₀ I , B is magnetic field , I is current , μ₀ is permeability .
Radius of the wire r = 1.2 x 10⁻³ m
magnetic field B will be circular in shape around the wire. If B is uniform
∫B.dl = B x 2πr
B x 2πr = μ₀ I
B = μ₀ I / 2πr
= 4π x 10⁻⁷ x 37 /2πx1.2 x 10⁻³
= 10⁻⁷ x 2x37 / 1.2 x 10⁻³
= 61.67 x 10⁻⁴ T
= 62 x 10⁻⁴ T
Answer: 2.86 m
Explanation:
To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,
ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)
In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have
mgh + 0 = 0 + KE(f)
To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have
mgh = 1/2mv² + 1/2Iw²
To get the inertia of the bodies, we use the formula
I = [m(R1² + R2²) / 2]
I = [2(0.2² + 0.1²) / 2]
I = 0.04 + 0.01
I = 0.05 kgm²
Also, the angular velocity is given by
w = v / R2
w = 4 / (1/5)
w = 20 rad/s
If we then substitute these values in the equation we have,
0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)
4.9h = 4 + 10
4.9h = 14
h = 14 / 4.9
h = 2.86 m
Answer:
A) 0.660 g/ml
B) 1.297 ml
C) 0.272 g
Explanation:
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes. This is where density appears as a physical characteristic property of matter that establishes a relationship between the mass of a body or substance and the volume it occupies:
(1)
Knowing this, let's begin with the answers:
<h2 /><h2>Answer A:</h2>
Here the mass is and th volume
Solving (1) with these values:
(2)
(3)
<h2>Answer B:</h2>
In this case the mass of a sample is and its density is .
Isolating from (1):
(4)
(5)
(5)
<h2>Answer C:</h2>
In this case the volume of a sample is and its density is .
Isolating from (1):
(6)
(7)
(8)
the correct answer is 27 hours per week :) hope this helps