Answer:
The change on the second particle is
.
Explanation:
The period of revolution of the particle in the magnetic field is given by the formula as follows :

It is given that the magnetic field is uniform. The mass of the second particle is the same as that of a proton but thecharge of this particle is different from that of a proton.

If both particles take the same amount of time to go once around their respective circles. So,

So, the change on the second particle is
.
Answer:
n = 1.4
Explanation:
Given,
R1 = 18 cm, R2 = -18 cm
From lens makers formula
1/f = (n - 1)(1/18 + 1/18) = (n-1)/9
f = 9/(n-1)
Power, P = 1/f ( in m) = (n-1)/0.09
Now, this lens is in with conjunction with a concave mirror which then can be thought of as to be in conjunction with another thin lens
Power of concave mirror = P' = 1/f ( in m) = 2/R = 2/0.18 = 1/0.09
Net power of the combination = 2P + P' = 2(n-1)/0.09 + 1/0.09 = 1/0.05
n = 1.4
A glass of salt water will take a slightly longer time & slightly lower temperature (28 F as compared to 32 F for fresh water) to freeze than a glass of fresh water.
Hope this helps!
Hello there!
For this:
1). Convert 10km to meters!
2). Convert the 30 minutes into seconds!
3). Use the following formula to solve for speed!
speed= distance/time
Note: The units should automatically work out to m/s. :)
My goal is to make sure you understand the problem, which is why I won't be giving you the answer. It'll be more work now, but less work in the future! :)
Hope this helped!
-------------
DISCLAIMER: I am not a professional tutor or have any professional background in your subject. Please do not copy my work down, as that will only make things harder for you in the long run. Take the time to really understand this, and it'll make future problems easier. I am human, and may make mistakes, despite my best efforts. Again, I possess no professional background in your subject, so anything you do with my help will be your responsibility. Thank you for reading this, and have a wonderful day/night!
To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s