Answer: 3.84dB
Explanation:
Since person A is talking 1.2dB louder than B, we will have
A = 1.2B... (1)
Similarly, person C is talking 3.2 dB louder than person A, we have
C = 3.2A... (2)
From equation 1, B = A/1.2... (3)
To get the ratio of the sound intensity of person C to the sound intensity of person B, we will divide equation 2 by 3 to give
C/B = 3.2A/{A/1.2}
C/B = 3.2A×1.2/A
C/B = 3.2×1.2
C/B = 3.84dB
Answer:
the radius of the earth in himalayan region is greater than terai reagion. therefore, the value of 'g' at the poles is greater than the value of g at the equator. 12
Explanation:
plz mark as brainlist thx :)
The average velocity of a car that travels 450 km north in 9.0 h is 5.0 x 10 km/h
in the same direction as the wave
Explanation:
In a compression wave, the particles in the medium moves in the same direction as the wave source.
A wave is generally defined as a disturbance that transmits energy.
- There are two types of waves based on the direction through which they are propagated.
- Transverse waves are directed perpendicularly in the direction of propagation.
- Examples are electromagnetic waves.
- Longitudinal waves are parallel to their source. Examples are sound waves, p-waves.
- They are made up of series of rarefaction and compression.
learn more:
Waves brainly.com/question/3183125
#learnwithBrainly
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.