Answer: D
Neither A nor B
Explanation:
In order to check the clearances for rod and main bearings, you need a set of micrometers and a dial-bore gauge
Measuring the inside diameter of a main or rod bearing will require a dial bore gauge. The best ones to use are accurate down to 0.0001-inch.
So, both technician A and B are incorrect
For this case we have that by definition, the kinetic energy is given by the following formula:

Where:
m: It is the mass
v: It is the velocity
According to the data we have to:

Substituting the values we have:

finally, the kinetic energy is 
Answer:
Option A
Answer:
A change in size, shape, or matter.
Explanation:
A physical change does not produce new substances. A physical change may only change the physical properties of a substance. a change in size, shape, or phase of matter.
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.
Answer:
Its momentum is multiplied by a factor of 1.25
Explanation:
First, we <u>calculate the initial velocity of the object</u>:
- 59.177 J = 0.5 * 3.4 kg * v₁²
With that velocity we can <u>calculate the initial momentum of the object</u>:
Then we <u>calculate the velocity of the object once its kinetic energy has increased</u>:
- (59.177 J) * 1.57 = 0.5 * 3.4 kg * v₂²
And <u>calculate the second momentum of the object</u>:
Finally we <u>calculate the factor</u>: