Answer:
Explanation:
The sum of the pore along the plane is expressed according to Newton's law
Fn-Ff = ma
Fn is the moving force
Ff = nR = frictional force
m is the Mass
a is the acceleration
Substitute the given values
Fn - nR = ma
Fn - tan31°(mgcostheta) =3.9(9.8)
Fn - tan31(3.9(9.8)cos31) = 3.9(9.8)
Fn - tan31(38.22cos31)= 38.22
Fn - 32.76tan31 = 38.22
Fn-19.68 = 38.22
Fn = 38.22+19.68.
Fn = 57.90N
Hence Fn (moving force) of the inclined block is 57.90
Answer:
People have been aware of magnets and magnetism for thousands of years. The earliest records date back to ancient times, particularly in the region of Asia Minor called Magnesia-the name of this region is the source of words like magnet. Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. When humans first discovered magnetic rocks, they likely found that certain parts of these rocks attracted bits of iron or other magnetic rocks more strongly than other parts. These areas are called the poles of a magnet. A magnetic pole is the part of a magnet that exerts the strongest force on other magnets or magnetic material, such as iron. For example, the poles of the bar magnet shown in Figure 20.2 are where the paper clips are concentrated.
Answer:
4 hertz
Explanation:
The defination of freqyency = the total no of cycle made by a wave in one second .
so,
cycle or vibrations=60
tame taken = 15
now,
frequency = no. of cycle / time taken
= 60/15
=4 hertz
hence, the its frequency = 4hertz
Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Shear stress created the San Andreas Fault in Southern California. It is an example of a <span>reverse fault.</span>