The change is called melting
Answer:
2.61 g of NO will be formed
The limiting reagent is the O₂
Explanation:
The reaction is:
4NH₃ + 5O₂ → 4NO + 6H₂O
We convert the mass of the reactants to moles:
3.25g / 17 g/mol = 0.191 moles of NH₃
3.50g / 32 g/mol =0.109 moles of O₂
Let's determine the limiting reactant by stoichiometry:
4 moles of ammonia react with 5 moles of oxygen
Then, 0.191 moles of ammonia will react with (0.191 . 5) / 4 = 0.238 moles of oxygen. We only have 0.109 moles of O₂ and we need 0.238, so as the oxygen is not enough, this is the limiting reagent
Ratio with NO is 5:4
5 moles of oxygen produce 4 moles of NO
0.109 moles will produce (0.109 . 4)/ 5 = 0.0872 moles of NO
We convert the moles to mass, to get the answer
0.0872 mol . 30g / 1 mol = 2.61 g
Answer:

Explanation:
The reaction is
KOH(aq) + HNO₃(aq) ⟶ KNO₃(aq) + H₂O(ℓ)
If you evaporate the water, the solid substance is the compound, potassium nitrate.

KNO₃(aq) ⟶ KNO₃(s)
Answer:
Magnesium
Explanation:
Using the KLMN styled electronic configuration, the electronic configuration of sulphur with atomic number 16 is 2, 8,6
What this means is that it needs extra 2 electrons to fill into its M shell to attain the octet configuration.
Now let’s look at Magnesium, with atomic number 12, the electronic configuration it has is 2,8,2.
This means it has 2 extra electrons to give away so as to attain its own stability.
The sulphur atom will gladly accept the two electrons which the magnesium atom wants to give away. This makes it the perfect element to be reacted with sulphur to make it attain its octet configuration