Deshielding due to an electronegative element close by is the common reason for observing increased chemical shift of a c-h proton
<h3>
What is a chemical shift? </h3>
The resonance frequency of a proton in relation to a standard compound is represented by chemical shift. Chemical shift, which is measured in ppm and is represented by the sign (δ), (parts per million).The chemical shift in a proton NMR spectrum provides details about the targeted proton's chemical surroundings. The structure of the investigated substance, especially electronegative components or effects, has a significant impact on the chemical shift value. Electronegative elements' ability to remove electron density from the proton, which raises the chemical shift value, is one explanation for this. The proton is more exposed to the magnetic field that is being applied externally as a result of this process, which is referred to as de-shielding.
To learn more about limbic system visit:
brainly.com/question/14788457
#SPJ4
[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.
Answer:
VH2SO4 = 145.3 mL
Explanation:
Mw BaO2 = 169.33 g/mol
⇒ mol BaO2 = 53.5g * ( mol BaO2 / 169.33 g BaO2) = 0.545 mol BaO2
⇒according to the reaction:
mol BaO2 = mol H2SO4 = 0.545 mol
⇒ V H2SO4 = 0.545 mol H2SO4 * ( L H2SO4 / 3.75 mol H2SO4 )
⇒V H2SO4 = 0.1453 L (145.3 mL)