1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
5

The solution in the two arms of the U-tube are separated by a membrane that is permeable to water and glucose but not to sucrose

. Side A is half filled with a solution of 2 M sucrose and 1 M glucose. Side B is half filled with 1 M sucrose and 2 M glucose. Initially, the liquid levels on both sides are equal. After the system reaches equilibrium. what changes are observed?
Chemistry
1 answer:
Gnom [1K]3 years ago
8 0

Answer:

The liquid level will rise in Side A and drop in Side B.

Step-by-step explanation:

The membrane is impermeable to sucrose, but permeable to sucrose and water.

<u>      Side A   </u>    <u>    Side B    </u>  

2 M sucrose   1 M sucrose

1 M glucose   2 M glucose

(a) Ignoring osmotic effects

The glucose will diffuse spontaneously from the side with higher concentration to that of lower concentration until equilibrium is established. There is no change in volume on either side.

At this point, we have

<u>     Side A       </u>   <u>        Side B   </u>      

2    M sucrose    1 M sucrose

1.5 M glucose    1.5 M glucose

=====

(b) With osmotic effects

The solute concentration on Side A is greater than on Side B.

Water will diffuse into Side A.

The liquid level will rise in Side A and drop in Side B.

You might be interested in
Why are hydrogen ions and hydroxide ions omitted from the net reaction for the hydrolysis of water?
Leviafan [203]
<span>Hydrolysis is the breaking down of bonds when water is involved in the reaction. </span>The net reaction for the hydrolysis of water yields hydrogen ions and hydroxide ions because these ions are dissociated upon solvolysis. This means they are completely dissolved and transformed into ions thereafter. 
4 0
3 years ago
Read 2 more answers
Which property of an atom's structure was used to organize the periodic table?
pshichka [43]
A atomic number hope i helped
6 0
3 years ago
Which of the following is an essential condition for a redox reaction?
Alborosie
<h3><u>Answer;</u></h3>

C.The oxidation state of all the atoms should change.

<h3><u>Explanation;</u></h3>
  • A redox reaction which is oxidation-reduction reaction is a type of chemical reaction that involves a transfer of electrons between two species.
  • An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.
  • In a redox reaction, the total number of electrons lost by the reducing agent must be equal to the number of electrons gained by the oxidizing agent.
3 0
3 years ago
CHEMISTRY HELP PLEASE *answer all questions please*
Lerok [7]

Answer:

<u><em>Question 1: </em></u>

A) 0.289 moles.

B) 1.74 x 10²³ atoms.

<u><em>Question 2:</em></u>

A) 0.30 moles.  

B) it contains 0.3 moles of both Na and Cl.

C) it contains 6.023 x 10²³ atoms of both Na and Cl.

<u><em>Question 3:</em></u>

A) The number of moles of sucrose (C₁₂H₂₂O₁₁) ≅ 0.0228 moles.

B) The number of moles of C atoms in sucrose (C₁₂H₂₂O₁₁) = 0.2763 mole of C atoms.

The number of moles of H atoms in sucrose (C₁₂H₂₂O₁₁) = 0.5016 mole of H atoms.

The number of moles of O atoms in sucrose (C₁₂H₂₂O₁₁) = 0.2508 mole of O atoms.

C) The number of C atoms = 1.65 x 10²³ atoms.

The number of H atoms = 3.02 x 10²³ atoms.

The number of O atoms = 1.51 x 10²³ atoms.

Explanation:

<u><em>Question 1:</em></u>

A) The number of moles of Au in 57.01 g sample:

n = mass / molar mass,

mass = 57.01 g and molar mass = 196.966 g/mol e.

The number of moles of Au in the sample = (57.01 g) / (196.966 g/mole) = 0.289 moles.

B) The number of atoms of Au in the sample:

It is known that every mole of a substance contains Avogadro,s number (NA = 6.023 x 10²³) of molecules.

1.0 mole of Au → 6.023 x 10²³ atoms

0.289 mole of Au → ???? atoms

<em>using cross multiplication: </em>

The number of atoms of Au in the sample = (6.023 x 10²³ x 0.289 mole) / (1.0 mole) = 1.74 x 10²³ atoms.


<u><em>Question 2:</em></u>

A) The number of moles of 17.45 g of NaCl:

n = mass / molar mass,

mass = 17.45 g and molar mass = 58.44 g/mole.

The number of moles of NaCl = (17.45 g) / (58.44 g/mole) = 0.298 mole ≅ 0.30 moles.

B) The number of moles of each element in NaCl  

NaCl → Na + Cl

Each mole of NaCl contains one mole of Na and one mole of Cl.

<em><u>using cross multiplication: </u></em>

1.0 mole NaCl → 1.0 mole Na

0.3 mole NaCl → ??? mole Na

The number of moles of Na atoms in NaCl = (1.0 mole Na x 0.3 mole NaCl) / (1.0 mole NaCl) = 0.3 mole of Na atoms.

by the same way; the number of moles of Cl atoms = (1.0 mole Cl x 0.3 mole NaCl) / (1.0 mole NaCl) = 0.3 mole of Cl atoms.

C) The number of atoms of each element in the sample:

It is known that every mole of a substance contains Avogadro,s number (NA = 6.023 x 10²³) of molecules.

1.0 mole of NaCl → 6.023 x 10²³ molecules

0.3 mole of NaCl → ???? molecules

<em><u>using cross multiplication:</u></em>

The number of molecules in 0.3 mole of NaCl = (6.023 x 10²³ x 0.3 mole) / (1.0 mole) = 1.8069 x 10²³ molecules.

Every molecule of NaCl contains one atom of Na and one atom of Cl.

So, it contains 6.023 x 10²³ atoms of both Na and Cl.


<u><em>Question 3:</em></u>

A) The number of moles of 7.801 g of sucrose (C₁₂H₂₂O₁₁):

n = mass / molar mass,

mass = 7.801 g and molar mass = 342.3 g/mole.

The number of moles of sucrose (C₁₂H₂₂O₁₁) = (7.801 g) / (342.3 g/mol) = 0.022789 mol ≅ 0.0228 moles.

B) The number of moles of each element in sucrose (C₁₂H₂₂O₁₁):

C₁₂H₂₂O₁₁ → 12C + 22H + 11O

Each mole of sucrose contains 12 moles of C, 22 moles of H, and 11 moles of O.

  • <em><u>using cross multiplication: </u></em>

1.0 mole of sucrose (C₁₂H₂₂O₁₁) → 12.0 moles C

0.0228 mole of sucrose (C₁₂H₂₂O₁₁) → ??? moles C

The number of moles of C atoms in sucrose (C₁₂H₂₂O₁₁) = (12.0 moles C x 0.0228 moles of sucrose (C₁₂H₂₂O₁₁)) / (1.0 mole sucrose (C₁₂H₂₂O₁₁)) = 0.2763 mole of C atoms.

  • By the same way; the number of moles of H atoms:

1.0 mole of sucrose (C₁₂H₂₂O₁₁) → 22.0 moles H

0.0228 mole of sucrose (C₁₂H₂₂O₁₁) → ??? moles H

The number of moles of H atoms in sucrose (C₁₂H₂₂O₁₁) = (22.0 moles H x 0.0228 moles of sucrose (C₁₂H₂₂O₁₁)) / (1.0 mole sucrose (C₁₂H₂₂O₁₁)) = 0.5016 mole of H atoms.

  • Also; the number of moles of O atoms:

1.0 mole of sucrose (C₁₂H₂₂O₁₁) → 11.0 moles O

0.0228 mole of sucrose (C₁₂H₂₂O₁₁) → ??? moles O

The number of moles of O atoms in sucrose (C₁₂H₂₂O₁₁) = (11.0 moles H x 0.0228 moles of sucrose (C₁₂H₂₂O₁₁)) / (1.0 mole sucrose (C₁₂H₂₂O₁₁)) = 0.2508 mole of O atoms.

C) The number of atoms of each element in the sucrose (C₁₂H₂₂O₁₁) sample:

It is known that every mole of a substance contains Avogadro,s number (NA = 6.023 x 10²³) of molecules.

1.0 mole of sucrose (C₁₂H₂₂O₁₁) → 6.023 x 10²³ molecules

0.0228 mole of sucrose (C₁₂H₂₂O₁₁) → ???? molecules

<em><u>using cross multiplication: </u></em>

The number of molecules in 0.0228 mole of sucrose (C₁₂H₂₂O₁₁) = (6.023 x 10²³ x 0.0228 mole) / (1.0 mole) = 1.273 x 10²² molecules.

Each molecule of sucrose contains 12 atoms of C, 22 atoms of H, and 11 atoms of O.

So, the number of each atom that the sucrose (C₁₂H₂₂O₁₁) sample contains are:

The number of C atoms = (12 x 1.273 x 10²² molecules) = 1.65 x 10²³ atoms.

The number of H atoms = (22 x 1.273 x 10²² molecules) = 3.02 x 10²³ atoms.

The number of O atoms = (11 x 1.273 x 10²² molecules) = 1.51 x 10²³ atoms.

6 0
3 years ago
Given the following unbalanced chemical reaction: As + NaOH Na3AsO3 + H2 What would be the coefficient of the NaOH molecule in t
Lady_Fox [76]
I believe 2 would be the coefficient
6 0
3 years ago
Read 2 more answers
Other questions:
  • Tetraphosphorous decoxice (P4O10) reacts with water to produce phosphoric acid.
    15·1 answer
  • The first ionization energies (kl/mol) of hydrogen (H), nitrogen (N), fluroine (F), and oxygen (O) are 1,312, 1,402, 1,742, and
    7·1 answer
  • What happens when the pressure of a gas is decreased?
    12·2 answers
  • Use Boyle's Law to solve the following problem. A 400 mL sample of a gas is at 10
    9·1 answer
  • How many molecules of PF5 are found in 39.5 grams of PF5?
    8·1 answer
  • Why is a liquid able to flow?
    6·2 answers
  • Convert 5.4 atm to torr
    10·1 answer
  • Change 1m 31cm to cm​
    7·2 answers
  • Which is sign that work is being done
    5·2 answers
  • What mass of Cu(s) is electroplated by running 19.5 A of current through a Cu2 (aq) solution for 4.00 h
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!