Answer:
a. 59 m/atm
Explanation:
- To solve this problem, we must mention Henry's law.
- <em>Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.</em>
- It can be expressed as: C = KP,
C is the concentration of the solution (C = 1.3 M).
P is the partial pressure of the gas above the solution (P = 0.022 atm).
K is the Henry's law constant (K = ??? M/atm),
∵ C = KP.
∴ K = C/P = (1.3 M)/(0.022 atm) = 59.0 M/atm.
its c with the older down the older it is
Answer: B
Nitrifying bacterium, plural Nitrifying Bacteria, any of a small group of aerobic bacteria (family Nitrobacteraceae) that use inorganic chemicals as an energy source.
So to balance an equation, you need to get the same amount of each type of element on either side of the --> . So you pretty much are given the subscripts in the equations and you need to add coefficients (just normal numbers) in front of any formula that needs it, keeping anything balance.

turns into

These coefficient numbers are the molar ratios, so 2 moles of KCl3 for every 3 moles of O2 so 1. 3:2
Then you can use these ratios of find out how many moles of one thing are needed if you are given the amount of another.

and use cross multiplication to solve for whatever you don't know
<span />
Answer:
C8H8 + 10O2 → 8CO2 + 4H2O
Explanation:
unbalanced reaction:
C8H8 + O2 → CO2 + H2O
balanced for semireactions:
(1) 16H2O + C8H8 → 8CO2 + 40H+
(2) 10(4H+ + O2 → 2H2O)
⇒ 40H+ + 10O2 → 20H2O
(1) + (2):
balanced reaction:
⇒ C8H8 + 10O2 → 8CO2 + 4H2O
8 - C - 8
20 - O2 - 20
8 - H - 8