Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
Answer: You know that monomers that are joined by condensation polymerization have two functional groups. You also know (from Part 6) that a carboxylic acid and an amine can form an amide linkage, jand a carboxylic acid and an alcohol can form an ester linkage.
Unfortunately, you haven't shared any data list which would make braunly users able to help you. The only thing I can suggest you is to write the neutralization reactions, this can make you understand the calculations more or less clearly. Please, next time check your attachments carefully.
A size dependent property is a physical property that changes when the size of an object changes.