The correct answer is option 2. A 0.8 M aqueous solution of NaCl has a higher boiling point and a lower freezing point than a 0.1 M aqueous solution of NaCl. This is explained by the colligative properties of solutions. For the two properties mentioned, the equation for the calculation of the depression and the elevation is expressed as: ΔT = -Km and <span>ΔT = Km, respectively. As we can see, concentration and the change in the property has a direct relationship.</span>
Answer:
4.0 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 12L
Pressure = 5.6 atm
Temperature (T) = 205K
Gas constant (R) = 0.08206 atm.L/Kmol
Number of mole (n) =?
Using the ideal gas equation: PV = nRT, the number of mole of the gas can be obtained as follow
PV = nRT
5.6 x 12 = n x 0.08206 x 205
Divide both side by 0.08206 x 205
n = (5.6 x 12)/(0.08206 x 205)
n = 4.0 moles
Therefore, the number of mole of the gas is 4.0 moles
Answer:
The solution is given below.
Explanation:
Speed = Distance(m)/Time(sec.)
Distance traveled = 150 m
Time taken = 3.5 seconds
Speed of car = 150/3.5 = 42.86 m/s
So the car traveled at a speed of 42.86 m/s.
He was involved in the mapping of venus and mars
Answer:
According to Kinetic Molecular Theory, an increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often. If the reaction is kept at constant pressure, they must stay farther apart, and an increase in volume will compensate for the increase in particle collision with the surface of the container.
Explanation: