Answer:
Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is .
Reversing III. gives us a negative enthalpy change as such:
(-Δ) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of , which is also the equation of interest.
Adding all three together:
()
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
I want to say 59 atomic mass units<span> is beta decay, but I'm just guessing from previous Chem. class.</span>
<span>the best answer is C i.e is ionoic compound. but all other option sare quite close enough but option B is sure wrong. because A molecular compound does not separate in a solvent.</span>
Among the choices, the unit of energy is calories. Answer in 1) is D. In 2) we are given with te mass , heat and temperature change. we just need to get the heat capacity and compare it with the following metals. The calculated heat capacity is 0.46 kJ/kg K. The answer is A. iron. In 3) we can compute the heat absorbed by the formula ΔH=mCpΔT. Cp of water is 4.18 J/g K. Answer of 3) is D. In 4) the formula used in Cp=ΔH/mΔT. Answer in 4) is A. The heat of enthalpy of fusion of ice is 80 cal/g. We convert this to J/g. Answer in 5) is B.334 J/g.
Energy is released when a chemical bond forms