Option A: Clouds
In the morning, air is cool and as sun begins to rise it starts increasing the temperature of air. By time, the air becomes warmer and warmer. Depending upon the surrounding conditions, air in different areas heat up at different rates.
Due to this heating, thermal formation takes place, this is due to uneven heating of surface of earth. The thermal formation at surface causes difference in temperature of surface of the earth and air around it. The warm air has tendency to rise thus, the air in the thermal rise and expand. Due to expansion it cools down, this process continues till the temperature of thermal air reaches equals to the temperature of surrounding air. This results in the formation of cloud.
Thus, when a humid air mass rises into a cooler temperature area, clouds formation takes place
Answer:
The molar entropy of the evaporation of Trichlorofluoromethan is 83.516 J/molK.
Explanation:
Entropy :It is defined as amount of energy which is unable to do work or the measurement of randomness or disorderedness in a system.

Molar heat of molar vaporization of Trichlorofluoromethane = 24.8 kJ/mol
Temperature at which Trichlorofluoromethan boils , T= 296.95 K
The molar entropy of the evaporation of Trichlorofluoromethan :

The molar entropy of the evaporation of Trichlorofluoromethan is 83.516 J/molK.
Because its only representing the most stable isotope of that element but its considered the atomic mass and not average atomic mass
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
For #4 first find the molar mass(M) of copper then use that and the mass (m) n=m/M to find moles(n) using moles and the volumes find the concentration using c=n/V