Q = ?
Cp = 0.397 J/ºC
Δt = 40.3 - 21.0<span> => 19.3</span><span> ºC</span>
m = 15.2 g
Q = m x Cp x Δt
Q = 15.2 x 0.397 x 19.3
Q ≈ 116.46 J
<span>hope this helps! </span>
Answer:
~69.744 moles of Ca
Explanation:
Using Avogadro's constant , we know that:
1 mole = 6.022 x 10^23 atoms
S0, the number of moles in 4.20 x 10^25 atoms of Ca:
=(4.20 x 10^25 x 1 )/(6.022 x 10^23)
~69.744 moles of Ca
Q2:How many atoms are in 0.35 moles of oxygen?
1 mole = 6.022 x 10^23 atoms
S0, the number of atoms in 0.35 moles of oxygen:
=[0.35 x (6.022 x 10^23)]
=2.1077 x 10^23 atoms of Oxygen
Hope it helps:)
The question is incomplete, the complete question is;
Why is a terminal alkyne favored when sodium amide (NaNH2) is used in an elimination reaction with 2,3-dichlorohexane? product. A) The terminal alkyne is more stable than the internal alkyne and is naturally the favored B) The terminal alkyne is not favored in this reaction. C) The resonance favors the formation of the terminal rather than internal alkyne. D) The strong base deprotonates the terminal alkyne and removes it from the equilibrium.
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Answer:
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Explanation:
In this reaction, sterric hindrance plays a very important role. We know that sodamide is a strong base, it tends to attack at the most accessible position.
The first deprotonation yields an alkene. The strong base attacks at the terminal position again and yields the terminal alkyne. Thus the structure of the dihalide makes the terminal hydrogen atoms most accessible to the base. Hence the answer.
Extensive properties depend on the amount of substance. The volume of a sample is an extensive property: 1000 grams of water takes up more volume than 10 grams of water. Mass is also an extensive property.
Answer:
0,218 moles
Explanation:
I will first explain how many liters is 256ml, that is 0,256 l.
because the m stands for milli which is a factor of 1000 -> (256 ml / 1000 = 0,256 l)
To calculate the amount of moles you multiply the volume with the concentration. So 0,256l x 0,855M = 0,218 moles.