The answer is 4.45 × 10²⁴ units.
To calculate this, we will use Avogadro's number which is the number of units (atoms, molecules) in 1 mole of substance:
6.02 × 10²³ units per 1 mole
So, we need a proportion:
If 6.02 × 10²³ units are in 1 mole, how many units will be in 7.40 moles:
6.02 × 10²³ units : 1 mole = x : 7.40 moles
After crossing the products:
1 mole * x = 7.40 moles * 6.02 × 10²³ units
x = 7.40 * 6.02 × 10²³ units
x = 44.5 × 10²³ units = 4.45× 10²⁴ unit
Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
A controlled variable is the one that is kept constant, the manipulated variable is the independent variable in an experiment , it is called manipulated because is the one that can be changed. A responding variable or variables are the dependent variables that change as a result of the changes in the manipulated variable.
Answer: The gas phase is unique among the three states of matter in that there are some simple models we can use to predict the physical behavior of all gases—independent of their identities. We cannot do this for the solid and liquid states. ... Gas particles do not experience any force of attraction or repulsion with each other.
Explanation:
Answer:
If an object is moving at a constant speed in a constant rightward direction, then the acceleration is zero and the net force must be zero.