The answer would be 200000 J. the equation for kinetic energy is 1/2 mass times velocity squared. 1/2 of 1,000 is 500. and 20*20 is 400. So, multiply 400 by 500, and that gives you your answer,
0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.
The two forms of oxygen, O2 and O3 is "<span>They have different molecular structures and different properties."</span>
Answer:
-173.15°C
Explanation:
Given data:
Temperature changes = 100 K
Temperature changes in degree Celsius = ?
Solution:
Kelvin and degree Celsius both are units of temperature.
In order to convert the degree Celsius to kelvin following equation is used.
Temperature in degree Celsius +273.15
For example;
100°C to kelvin = 100+273.15 = 373.15 K
To convert the kelvin into degree Celsius:
100K - 272.15 = -173.15°C